Solve for x
x=\frac{\sqrt{7}}{7}\approx 0.377964473
x=-\frac{\sqrt{7}}{7}\approx -0.377964473
Graph
Share
Copied to clipboard
34+25x^{2}+\left(21x\right)^{2}=4+\left(26x\right)^{2}
Add 25 and 9 to get 34.
34+25x^{2}+21^{2}x^{2}=4+\left(26x\right)^{2}
Expand \left(21x\right)^{2}.
34+25x^{2}+441x^{2}=4+\left(26x\right)^{2}
Calculate 21 to the power of 2 and get 441.
34+466x^{2}=4+\left(26x\right)^{2}
Combine 25x^{2} and 441x^{2} to get 466x^{2}.
34+466x^{2}=4+26^{2}x^{2}
Expand \left(26x\right)^{2}.
34+466x^{2}=4+676x^{2}
Calculate 26 to the power of 2 and get 676.
34+466x^{2}-676x^{2}=4
Subtract 676x^{2} from both sides.
34-210x^{2}=4
Combine 466x^{2} and -676x^{2} to get -210x^{2}.
-210x^{2}=4-34
Subtract 34 from both sides.
-210x^{2}=-30
Subtract 34 from 4 to get -30.
x^{2}=\frac{-30}{-210}
Divide both sides by -210.
x^{2}=\frac{1}{7}
Reduce the fraction \frac{-30}{-210} to lowest terms by extracting and canceling out -30.
x=\frac{\sqrt{7}}{7} x=-\frac{\sqrt{7}}{7}
Take the square root of both sides of the equation.
34+25x^{2}+\left(21x\right)^{2}=4+\left(26x\right)^{2}
Add 25 and 9 to get 34.
34+25x^{2}+21^{2}x^{2}=4+\left(26x\right)^{2}
Expand \left(21x\right)^{2}.
34+25x^{2}+441x^{2}=4+\left(26x\right)^{2}
Calculate 21 to the power of 2 and get 441.
34+466x^{2}=4+\left(26x\right)^{2}
Combine 25x^{2} and 441x^{2} to get 466x^{2}.
34+466x^{2}=4+26^{2}x^{2}
Expand \left(26x\right)^{2}.
34+466x^{2}=4+676x^{2}
Calculate 26 to the power of 2 and get 676.
34+466x^{2}-4=676x^{2}
Subtract 4 from both sides.
30+466x^{2}=676x^{2}
Subtract 4 from 34 to get 30.
30+466x^{2}-676x^{2}=0
Subtract 676x^{2} from both sides.
30-210x^{2}=0
Combine 466x^{2} and -676x^{2} to get -210x^{2}.
-210x^{2}+30=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-210\right)\times 30}}{2\left(-210\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -210 for a, 0 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-210\right)\times 30}}{2\left(-210\right)}
Square 0.
x=\frac{0±\sqrt{840\times 30}}{2\left(-210\right)}
Multiply -4 times -210.
x=\frac{0±\sqrt{25200}}{2\left(-210\right)}
Multiply 840 times 30.
x=\frac{0±60\sqrt{7}}{2\left(-210\right)}
Take the square root of 25200.
x=\frac{0±60\sqrt{7}}{-420}
Multiply 2 times -210.
x=-\frac{\sqrt{7}}{7}
Now solve the equation x=\frac{0±60\sqrt{7}}{-420} when ± is plus.
x=\frac{\sqrt{7}}{7}
Now solve the equation x=\frac{0±60\sqrt{7}}{-420} when ± is minus.
x=-\frac{\sqrt{7}}{7} x=\frac{\sqrt{7}}{7}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}