Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}-x+10-x=0
Subtract x from both sides.
25x^{2}-2x+10=0
Combine -x and -x to get -2x.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 25\times 10}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -2 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 25\times 10}}{2\times 25}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-100\times 10}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-2\right)±\sqrt{4-1000}}{2\times 25}
Multiply -100 times 10.
x=\frac{-\left(-2\right)±\sqrt{-996}}{2\times 25}
Add 4 to -1000.
x=\frac{-\left(-2\right)±2\sqrt{249}i}{2\times 25}
Take the square root of -996.
x=\frac{2±2\sqrt{249}i}{2\times 25}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{249}i}{50}
Multiply 2 times 25.
x=\frac{2+2\sqrt{249}i}{50}
Now solve the equation x=\frac{2±2\sqrt{249}i}{50} when ± is plus. Add 2 to 2i\sqrt{249}.
x=\frac{1+\sqrt{249}i}{25}
Divide 2+2i\sqrt{249} by 50.
x=\frac{-2\sqrt{249}i+2}{50}
Now solve the equation x=\frac{2±2\sqrt{249}i}{50} when ± is minus. Subtract 2i\sqrt{249} from 2.
x=\frac{-\sqrt{249}i+1}{25}
Divide 2-2i\sqrt{249} by 50.
x=\frac{1+\sqrt{249}i}{25} x=\frac{-\sqrt{249}i+1}{25}
The equation is now solved.
25x^{2}-x+10-x=0
Subtract x from both sides.
25x^{2}-2x+10=0
Combine -x and -x to get -2x.
25x^{2}-2x=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\frac{25x^{2}-2x}{25}=-\frac{10}{25}
Divide both sides by 25.
x^{2}-\frac{2}{25}x=-\frac{10}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{2}{25}x=-\frac{2}{5}
Reduce the fraction \frac{-10}{25} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{2}{25}x+\left(-\frac{1}{25}\right)^{2}=-\frac{2}{5}+\left(-\frac{1}{25}\right)^{2}
Divide -\frac{2}{25}, the coefficient of the x term, by 2 to get -\frac{1}{25}. Then add the square of -\frac{1}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{25}x+\frac{1}{625}=-\frac{2}{5}+\frac{1}{625}
Square -\frac{1}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{25}x+\frac{1}{625}=-\frac{249}{625}
Add -\frac{2}{5} to \frac{1}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{25}\right)^{2}=-\frac{249}{625}
Factor x^{2}-\frac{2}{25}x+\frac{1}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{25}\right)^{2}}=\sqrt{-\frac{249}{625}}
Take the square root of both sides of the equation.
x-\frac{1}{25}=\frac{\sqrt{249}i}{25} x-\frac{1}{25}=-\frac{\sqrt{249}i}{25}
Simplify.
x=\frac{1+\sqrt{249}i}{25} x=\frac{-\sqrt{249}i+1}{25}
Add \frac{1}{25} to both sides of the equation.