Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}=15
Add 15 to both sides. Anything plus zero gives itself.
x^{2}=\frac{15}{25}
Divide both sides by 25.
x^{2}=\frac{3}{5}
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
x=\frac{\sqrt{15}}{5} x=-\frac{\sqrt{15}}{5}
Take the square root of both sides of the equation.
25x^{2}-15=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 25\left(-15\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 0 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 25\left(-15\right)}}{2\times 25}
Square 0.
x=\frac{0±\sqrt{-100\left(-15\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{0±\sqrt{1500}}{2\times 25}
Multiply -100 times -15.
x=\frac{0±10\sqrt{15}}{2\times 25}
Take the square root of 1500.
x=\frac{0±10\sqrt{15}}{50}
Multiply 2 times 25.
x=\frac{\sqrt{15}}{5}
Now solve the equation x=\frac{0±10\sqrt{15}}{50} when ± is plus.
x=-\frac{\sqrt{15}}{5}
Now solve the equation x=\frac{0±10\sqrt{15}}{50} when ± is minus.
x=\frac{\sqrt{15}}{5} x=-\frac{\sqrt{15}}{5}
The equation is now solved.