Solve for x
x=\frac{\sqrt{1641}-29}{20}\approx 0.57546291
x=\frac{-\sqrt{1641}-29}{20}\approx -3.47546291
Graph
Share
Copied to clipboard
25x^{2}+72.5x=50
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
25x^{2}+72.5x-50=50-50
Subtract 50 from both sides of the equation.
25x^{2}+72.5x-50=0
Subtracting 50 from itself leaves 0.
x=\frac{-72.5±\sqrt{72.5^{2}-4\times 25\left(-50\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 72.5 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72.5±\sqrt{5256.25-4\times 25\left(-50\right)}}{2\times 25}
Square 72.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-72.5±\sqrt{5256.25-100\left(-50\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-72.5±\sqrt{5256.25+5000}}{2\times 25}
Multiply -100 times -50.
x=\frac{-72.5±\sqrt{10256.25}}{2\times 25}
Add 5256.25 to 5000.
x=\frac{-72.5±\frac{5\sqrt{1641}}{2}}{2\times 25}
Take the square root of 10256.25.
x=\frac{-72.5±\frac{5\sqrt{1641}}{2}}{50}
Multiply 2 times 25.
x=\frac{5\sqrt{1641}-145}{2\times 50}
Now solve the equation x=\frac{-72.5±\frac{5\sqrt{1641}}{2}}{50} when ± is plus. Add -72.5 to \frac{5\sqrt{1641}}{2}.
x=\frac{\sqrt{1641}-29}{20}
Divide \frac{-145+5\sqrt{1641}}{2} by 50.
x=\frac{-5\sqrt{1641}-145}{2\times 50}
Now solve the equation x=\frac{-72.5±\frac{5\sqrt{1641}}{2}}{50} when ± is minus. Subtract \frac{5\sqrt{1641}}{2} from -72.5.
x=\frac{-\sqrt{1641}-29}{20}
Divide \frac{-145-5\sqrt{1641}}{2} by 50.
x=\frac{\sqrt{1641}-29}{20} x=\frac{-\sqrt{1641}-29}{20}
The equation is now solved.
25x^{2}+72.5x=50
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25x^{2}+72.5x}{25}=\frac{50}{25}
Divide both sides by 25.
x^{2}+\frac{72.5}{25}x=\frac{50}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+2.9x=\frac{50}{25}
Divide 72.5 by 25.
x^{2}+2.9x=2
Divide 50 by 25.
x^{2}+2.9x+1.45^{2}=2+1.45^{2}
Divide 2.9, the coefficient of the x term, by 2 to get 1.45. Then add the square of 1.45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2.9x+2.1025=2+2.1025
Square 1.45 by squaring both the numerator and the denominator of the fraction.
x^{2}+2.9x+2.1025=4.1025
Add 2 to 2.1025.
\left(x+1.45\right)^{2}=4.1025
Factor x^{2}+2.9x+2.1025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1.45\right)^{2}}=\sqrt{4.1025}
Take the square root of both sides of the equation.
x+1.45=\frac{\sqrt{1641}}{20} x+1.45=-\frac{\sqrt{1641}}{20}
Simplify.
x=\frac{\sqrt{1641}-29}{20} x=\frac{-\sqrt{1641}-29}{20}
Subtract 1.45 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}