Solve for x
x = \frac{4 \sqrt{41} - 1}{5} \approx 4.92249939
x=\frac{-4\sqrt{41}-1}{5}\approx -5.32249939
Graph
Share
Copied to clipboard
25x^{2}+10x=655
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
25x^{2}+10x-655=655-655
Subtract 655 from both sides of the equation.
25x^{2}+10x-655=0
Subtracting 655 from itself leaves 0.
x=\frac{-10±\sqrt{10^{2}-4\times 25\left(-655\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 10 for b, and -655 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 25\left(-655\right)}}{2\times 25}
Square 10.
x=\frac{-10±\sqrt{100-100\left(-655\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-10±\sqrt{100+65500}}{2\times 25}
Multiply -100 times -655.
x=\frac{-10±\sqrt{65600}}{2\times 25}
Add 100 to 65500.
x=\frac{-10±40\sqrt{41}}{2\times 25}
Take the square root of 65600.
x=\frac{-10±40\sqrt{41}}{50}
Multiply 2 times 25.
x=\frac{40\sqrt{41}-10}{50}
Now solve the equation x=\frac{-10±40\sqrt{41}}{50} when ± is plus. Add -10 to 40\sqrt{41}.
x=\frac{4\sqrt{41}-1}{5}
Divide -10+40\sqrt{41} by 50.
x=\frac{-40\sqrt{41}-10}{50}
Now solve the equation x=\frac{-10±40\sqrt{41}}{50} when ± is minus. Subtract 40\sqrt{41} from -10.
x=\frac{-4\sqrt{41}-1}{5}
Divide -10-40\sqrt{41} by 50.
x=\frac{4\sqrt{41}-1}{5} x=\frac{-4\sqrt{41}-1}{5}
The equation is now solved.
25x^{2}+10x=655
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25x^{2}+10x}{25}=\frac{655}{25}
Divide both sides by 25.
x^{2}+\frac{10}{25}x=\frac{655}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+\frac{2}{5}x=\frac{655}{25}
Reduce the fraction \frac{10}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{2}{5}x=\frac{131}{5}
Reduce the fraction \frac{655}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{131}{5}+\left(\frac{1}{5}\right)^{2}
Divide \frac{2}{5}, the coefficient of the x term, by 2 to get \frac{1}{5}. Then add the square of \frac{1}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{131}{5}+\frac{1}{25}
Square \frac{1}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{656}{25}
Add \frac{131}{5} to \frac{1}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{5}\right)^{2}=\frac{656}{25}
Factor x^{2}+\frac{2}{5}x+\frac{1}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{656}{25}}
Take the square root of both sides of the equation.
x+\frac{1}{5}=\frac{4\sqrt{41}}{5} x+\frac{1}{5}=-\frac{4\sqrt{41}}{5}
Simplify.
x=\frac{4\sqrt{41}-1}{5} x=\frac{-4\sqrt{41}-1}{5}
Subtract \frac{1}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}