Solve for x
x = \frac{40}{9} = 4\frac{4}{9} \approx 4.444444444
Graph
Share
Copied to clipboard
\frac{126}{5}x-\left(12+3\right)\times 6=22
Combine 25x and \frac{1}{5}x to get \frac{126}{5}x.
\frac{126}{5}x-15\times 6=22
Add 12 and 3 to get 15.
\frac{126}{5}x-90=22
Multiply 15 and 6 to get 90.
\frac{126}{5}x=22+90
Add 90 to both sides.
\frac{126}{5}x=112
Add 22 and 90 to get 112.
x=112\times \frac{5}{126}
Multiply both sides by \frac{5}{126}, the reciprocal of \frac{126}{5}.
x=\frac{112\times 5}{126}
Express 112\times \frac{5}{126} as a single fraction.
x=\frac{560}{126}
Multiply 112 and 5 to get 560.
x=\frac{40}{9}
Reduce the fraction \frac{560}{126} to lowest terms by extracting and canceling out 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}