Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

25t^{2}+24t+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-24±\sqrt{24^{2}-4\times 25\times 4}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-24±\sqrt{576-4\times 25\times 4}}{2\times 25}
Square 24.
t=\frac{-24±\sqrt{576-100\times 4}}{2\times 25}
Multiply -4 times 25.
t=\frac{-24±\sqrt{576-400}}{2\times 25}
Multiply -100 times 4.
t=\frac{-24±\sqrt{176}}{2\times 25}
Add 576 to -400.
t=\frac{-24±4\sqrt{11}}{2\times 25}
Take the square root of 176.
t=\frac{-24±4\sqrt{11}}{50}
Multiply 2 times 25.
t=\frac{4\sqrt{11}-24}{50}
Now solve the equation t=\frac{-24±4\sqrt{11}}{50} when ± is plus. Add -24 to 4\sqrt{11}.
t=\frac{2\sqrt{11}-12}{25}
Divide -24+4\sqrt{11} by 50.
t=\frac{-4\sqrt{11}-24}{50}
Now solve the equation t=\frac{-24±4\sqrt{11}}{50} when ± is minus. Subtract 4\sqrt{11} from -24.
t=\frac{-2\sqrt{11}-12}{25}
Divide -24-4\sqrt{11} by 50.
25t^{2}+24t+4=25\left(t-\frac{2\sqrt{11}-12}{25}\right)\left(t-\frac{-2\sqrt{11}-12}{25}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-12+2\sqrt{11}}{25} for x_{1} and \frac{-12-2\sqrt{11}}{25} for x_{2}.
x ^ 2 +\frac{24}{25}x +\frac{4}{25} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 25
r + s = -\frac{24}{25} rs = \frac{4}{25}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{12}{25} - u s = -\frac{12}{25} + u
Two numbers r and s sum up to -\frac{24}{25} exactly when the average of the two numbers is \frac{1}{2}*-\frac{24}{25} = -\frac{12}{25}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{12}{25} - u) (-\frac{12}{25} + u) = \frac{4}{25}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{4}{25}
\frac{144}{625} - u^2 = \frac{4}{25}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{4}{25}-\frac{144}{625} = -\frac{44}{625}
Simplify the expression by subtracting \frac{144}{625} on both sides
u^2 = \frac{44}{625} u = \pm\sqrt{\frac{44}{625}} = \pm \frac{\sqrt{44}}{25}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{12}{25} - \frac{\sqrt{44}}{25} = -0.745 s = -\frac{12}{25} + \frac{\sqrt{44}}{25} = -0.215
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.