Evaluate
2\left(c+13d\right)
Expand
2c+26d
Share
Copied to clipboard
25d-\left(2c-3d-\left(-c\right)+2d-5c\right)
To find the opposite of 3d-c, find the opposite of each term.
25d-\left(2c-3d+c+2d-5c\right)
The opposite of -c is c.
25d-\left(3c-3d+2d-5c\right)
Combine 2c and c to get 3c.
25d-\left(3c-d-5c\right)
Combine -3d and 2d to get -d.
25d-\left(-2c-d\right)
Combine 3c and -5c to get -2c.
25d-\left(-2c\right)-\left(-d\right)
To find the opposite of -2c-d, find the opposite of each term.
25d+2c-\left(-d\right)
The opposite of -2c is 2c.
25d+2c+d
The opposite of -d is d.
26d+2c
Combine 25d and d to get 26d.
25d-\left(2c-3d-\left(-c\right)+2d-5c\right)
To find the opposite of 3d-c, find the opposite of each term.
25d-\left(2c-3d+c+2d-5c\right)
The opposite of -c is c.
25d-\left(3c-3d+2d-5c\right)
Combine 2c and c to get 3c.
25d-\left(3c-d-5c\right)
Combine -3d and 2d to get -d.
25d-\left(-2c-d\right)
Combine 3c and -5c to get -2c.
25d-\left(-2c\right)-\left(-d\right)
To find the opposite of -2c-d, find the opposite of each term.
25d+2c-\left(-d\right)
The opposite of -2c is 2c.
25d+2c+d
The opposite of -d is d.
26d+2c
Combine 25d and d to get 26d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}