Solve for a
a=8
a = \frac{288}{25} = 11\frac{13}{25} = 11.52
Share
Copied to clipboard
25a^{2}-488a+2304=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-488\right)±\sqrt{\left(-488\right)^{2}-4\times 25\times 2304}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -488 for b, and 2304 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-488\right)±\sqrt{238144-4\times 25\times 2304}}{2\times 25}
Square -488.
a=\frac{-\left(-488\right)±\sqrt{238144-100\times 2304}}{2\times 25}
Multiply -4 times 25.
a=\frac{-\left(-488\right)±\sqrt{238144-230400}}{2\times 25}
Multiply -100 times 2304.
a=\frac{-\left(-488\right)±\sqrt{7744}}{2\times 25}
Add 238144 to -230400.
a=\frac{-\left(-488\right)±88}{2\times 25}
Take the square root of 7744.
a=\frac{488±88}{2\times 25}
The opposite of -488 is 488.
a=\frac{488±88}{50}
Multiply 2 times 25.
a=\frac{576}{50}
Now solve the equation a=\frac{488±88}{50} when ± is plus. Add 488 to 88.
a=\frac{288}{25}
Reduce the fraction \frac{576}{50} to lowest terms by extracting and canceling out 2.
a=\frac{400}{50}
Now solve the equation a=\frac{488±88}{50} when ± is minus. Subtract 88 from 488.
a=8
Divide 400 by 50.
a=\frac{288}{25} a=8
The equation is now solved.
25a^{2}-488a+2304=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25a^{2}-488a+2304-2304=-2304
Subtract 2304 from both sides of the equation.
25a^{2}-488a=-2304
Subtracting 2304 from itself leaves 0.
\frac{25a^{2}-488a}{25}=-\frac{2304}{25}
Divide both sides by 25.
a^{2}-\frac{488}{25}a=-\frac{2304}{25}
Dividing by 25 undoes the multiplication by 25.
a^{2}-\frac{488}{25}a+\left(-\frac{244}{25}\right)^{2}=-\frac{2304}{25}+\left(-\frac{244}{25}\right)^{2}
Divide -\frac{488}{25}, the coefficient of the x term, by 2 to get -\frac{244}{25}. Then add the square of -\frac{244}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{488}{25}a+\frac{59536}{625}=-\frac{2304}{25}+\frac{59536}{625}
Square -\frac{244}{25} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{488}{25}a+\frac{59536}{625}=\frac{1936}{625}
Add -\frac{2304}{25} to \frac{59536}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{244}{25}\right)^{2}=\frac{1936}{625}
Factor a^{2}-\frac{488}{25}a+\frac{59536}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{244}{25}\right)^{2}}=\sqrt{\frac{1936}{625}}
Take the square root of both sides of the equation.
a-\frac{244}{25}=\frac{44}{25} a-\frac{244}{25}=-\frac{44}{25}
Simplify.
a=\frac{288}{25} a=8
Add \frac{244}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}