Solve for x
x<\frac{301}{12}
Graph
Share
Copied to clipboard
25-x-\left(-\frac{5}{6}\right)>\frac{3}{4}
To find the opposite of x-\frac{5}{6}, find the opposite of each term.
25-x+\frac{5}{6}>\frac{3}{4}
The opposite of -\frac{5}{6} is \frac{5}{6}.
\frac{150}{6}-x+\frac{5}{6}>\frac{3}{4}
Convert 25 to fraction \frac{150}{6}.
\frac{150+5}{6}-x>\frac{3}{4}
Since \frac{150}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{155}{6}-x>\frac{3}{4}
Add 150 and 5 to get 155.
-x>\frac{3}{4}-\frac{155}{6}
Subtract \frac{155}{6} from both sides.
-x>\frac{9}{12}-\frac{310}{12}
Least common multiple of 4 and 6 is 12. Convert \frac{3}{4} and \frac{155}{6} to fractions with denominator 12.
-x>\frac{9-310}{12}
Since \frac{9}{12} and \frac{310}{12} have the same denominator, subtract them by subtracting their numerators.
-x>-\frac{301}{12}
Subtract 310 from 9 to get -301.
x<\frac{-\frac{301}{12}}{-1}
Divide both sides by -1. Since -1 is negative, the inequality direction is changed.
x<\frac{-301}{12\left(-1\right)}
Express \frac{-\frac{301}{12}}{-1} as a single fraction.
x<\frac{-301}{-12}
Multiply 12 and -1 to get -12.
x<\frac{301}{12}
Fraction \frac{-301}{-12} can be simplified to \frac{301}{12} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}