Evaluate
\frac{24x_{2}+4x_{4}-3x_{17}+24315330918113857739}{7}
Expand
\frac{24x_{2}+4x_{4}-3x_{17}+24315330918113857739}{7}
Share
Copied to clipboard
25-\frac{3x_{17}-\left(10-6\left(8-4x_{2}-4052555153018976267\right)\right)-4x_{4}}{7}
Calculate 27 to the power of 13 and get 4052555153018976267.
25-\frac{3x_{17}-\left(10-6\left(-4052555153018976259-4x_{2}\right)\right)-4x_{4}}{7}
Subtract 4052555153018976267 from 8 to get -4052555153018976259.
25-\frac{3x_{17}-10-\left(-6\left(-4052555153018976259-4x_{2}\right)\right)-4x_{4}}{7}
To find the opposite of 10-6\left(-4052555153018976259-4x_{2}\right), find the opposite of each term.
25-\frac{3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}}{7}
The opposite of -6\left(-4052555153018976259-4x_{2}\right) is 6\left(-4052555153018976259-4x_{2}\right).
\frac{25\times 7}{7}-\frac{3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 25 times \frac{7}{7}.
\frac{25\times 7-\left(3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}\right)}{7}
Since \frac{25\times 7}{7} and \frac{3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{175-3x_{17}+10+24315330918113857554+24x_{2}+4x_{4}}{7}
Do the multiplications in 25\times 7-\left(3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}\right).
\frac{24315330918113857739-3x_{17}+24x_{2}+4x_{4}}{7}
Combine like terms in 175-3x_{17}+10+24315330918113857554+24x_{2}+4x_{4}.
25-\frac{3x_{17}-\left(10-6\left(8-4x_{2}-4052555153018976267\right)\right)-4x_{4}}{7}
Calculate 27 to the power of 13 and get 4052555153018976267.
25-\frac{3x_{17}-\left(10-6\left(-4052555153018976259-4x_{2}\right)\right)-4x_{4}}{7}
Subtract 4052555153018976267 from 8 to get -4052555153018976259.
25-\frac{3x_{17}-10-\left(-6\left(-4052555153018976259-4x_{2}\right)\right)-4x_{4}}{7}
To find the opposite of 10-6\left(-4052555153018976259-4x_{2}\right), find the opposite of each term.
25-\frac{3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}}{7}
The opposite of -6\left(-4052555153018976259-4x_{2}\right) is 6\left(-4052555153018976259-4x_{2}\right).
\frac{25\times 7}{7}-\frac{3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}}{7}
To add or subtract expressions, expand them to make their denominators the same. Multiply 25 times \frac{7}{7}.
\frac{25\times 7-\left(3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}\right)}{7}
Since \frac{25\times 7}{7} and \frac{3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{175-3x_{17}+10+24315330918113857554+24x_{2}+4x_{4}}{7}
Do the multiplications in 25\times 7-\left(3x_{17}-10+6\left(-4052555153018976259-4x_{2}\right)-4x_{4}\right).
\frac{24315330918113857739-3x_{17}+24x_{2}+4x_{4}}{7}
Combine like terms in 175-3x_{17}+10+24315330918113857554+24x_{2}+4x_{4}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}