Solve for x
x = \frac{8}{5} = 1\frac{3}{5} = 1.6
x=\frac{2}{5}=0.4
Graph
Share
Copied to clipboard
25\left(x^{2}-2x+1\right)-9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
25x^{2}-50x+25-9=0
Use the distributive property to multiply 25 by x^{2}-2x+1.
25x^{2}-50x+16=0
Subtract 9 from 25 to get 16.
a+b=-50 ab=25\times 16=400
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
-1,-400 -2,-200 -4,-100 -5,-80 -8,-50 -10,-40 -16,-25 -20,-20
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 400.
-1-400=-401 -2-200=-202 -4-100=-104 -5-80=-85 -8-50=-58 -10-40=-50 -16-25=-41 -20-20=-40
Calculate the sum for each pair.
a=-40 b=-10
The solution is the pair that gives sum -50.
\left(25x^{2}-40x\right)+\left(-10x+16\right)
Rewrite 25x^{2}-50x+16 as \left(25x^{2}-40x\right)+\left(-10x+16\right).
5x\left(5x-8\right)-2\left(5x-8\right)
Factor out 5x in the first and -2 in the second group.
\left(5x-8\right)\left(5x-2\right)
Factor out common term 5x-8 by using distributive property.
x=\frac{8}{5} x=\frac{2}{5}
To find equation solutions, solve 5x-8=0 and 5x-2=0.
25\left(x^{2}-2x+1\right)-9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
25x^{2}-50x+25-9=0
Use the distributive property to multiply 25 by x^{2}-2x+1.
25x^{2}-50x+16=0
Subtract 9 from 25 to get 16.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 25\times 16}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -50 for b, and 16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 25\times 16}}{2\times 25}
Square -50.
x=\frac{-\left(-50\right)±\sqrt{2500-100\times 16}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-50\right)±\sqrt{2500-1600}}{2\times 25}
Multiply -100 times 16.
x=\frac{-\left(-50\right)±\sqrt{900}}{2\times 25}
Add 2500 to -1600.
x=\frac{-\left(-50\right)±30}{2\times 25}
Take the square root of 900.
x=\frac{50±30}{2\times 25}
The opposite of -50 is 50.
x=\frac{50±30}{50}
Multiply 2 times 25.
x=\frac{80}{50}
Now solve the equation x=\frac{50±30}{50} when ± is plus. Add 50 to 30.
x=\frac{8}{5}
Reduce the fraction \frac{80}{50} to lowest terms by extracting and canceling out 10.
x=\frac{20}{50}
Now solve the equation x=\frac{50±30}{50} when ± is minus. Subtract 30 from 50.
x=\frac{2}{5}
Reduce the fraction \frac{20}{50} to lowest terms by extracting and canceling out 10.
x=\frac{8}{5} x=\frac{2}{5}
The equation is now solved.
25\left(x^{2}-2x+1\right)-9=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
25x^{2}-50x+25-9=0
Use the distributive property to multiply 25 by x^{2}-2x+1.
25x^{2}-50x+16=0
Subtract 9 from 25 to get 16.
25x^{2}-50x=-16
Subtract 16 from both sides. Anything subtracted from zero gives its negation.
\frac{25x^{2}-50x}{25}=-\frac{16}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{50}{25}\right)x=-\frac{16}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-2x=-\frac{16}{25}
Divide -50 by 25.
x^{2}-2x+1=-\frac{16}{25}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{9}{25}
Add -\frac{16}{25} to 1.
\left(x-1\right)^{2}=\frac{9}{25}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{9}{25}}
Take the square root of both sides of the equation.
x-1=\frac{3}{5} x-1=-\frac{3}{5}
Simplify.
x=\frac{8}{5} x=\frac{2}{5}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}