Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25\left(x^{2}+4x+4\right)=\left(x-7\right)^{2}-81
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
25x^{2}+100x+100=\left(x-7\right)^{2}-81
Use the distributive property to multiply 25 by x^{2}+4x+4.
25x^{2}+100x+100=x^{2}-14x+49-81
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
25x^{2}+100x+100=x^{2}-14x-32
Subtract 81 from 49 to get -32.
25x^{2}+100x+100-x^{2}=-14x-32
Subtract x^{2} from both sides.
24x^{2}+100x+100=-14x-32
Combine 25x^{2} and -x^{2} to get 24x^{2}.
24x^{2}+100x+100+14x=-32
Add 14x to both sides.
24x^{2}+114x+100=-32
Combine 100x and 14x to get 114x.
24x^{2}+114x+100+32=0
Add 32 to both sides.
24x^{2}+114x+132=0
Add 100 and 32 to get 132.
x=\frac{-114±\sqrt{114^{2}-4\times 24\times 132}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 114 for b, and 132 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-114±\sqrt{12996-4\times 24\times 132}}{2\times 24}
Square 114.
x=\frac{-114±\sqrt{12996-96\times 132}}{2\times 24}
Multiply -4 times 24.
x=\frac{-114±\sqrt{12996-12672}}{2\times 24}
Multiply -96 times 132.
x=\frac{-114±\sqrt{324}}{2\times 24}
Add 12996 to -12672.
x=\frac{-114±18}{2\times 24}
Take the square root of 324.
x=\frac{-114±18}{48}
Multiply 2 times 24.
x=-\frac{96}{48}
Now solve the equation x=\frac{-114±18}{48} when ± is plus. Add -114 to 18.
x=-2
Divide -96 by 48.
x=-\frac{132}{48}
Now solve the equation x=\frac{-114±18}{48} when ± is minus. Subtract 18 from -114.
x=-\frac{11}{4}
Reduce the fraction \frac{-132}{48} to lowest terms by extracting and canceling out 12.
x=-2 x=-\frac{11}{4}
The equation is now solved.
25\left(x^{2}+4x+4\right)=\left(x-7\right)^{2}-81
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
25x^{2}+100x+100=\left(x-7\right)^{2}-81
Use the distributive property to multiply 25 by x^{2}+4x+4.
25x^{2}+100x+100=x^{2}-14x+49-81
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-7\right)^{2}.
25x^{2}+100x+100=x^{2}-14x-32
Subtract 81 from 49 to get -32.
25x^{2}+100x+100-x^{2}=-14x-32
Subtract x^{2} from both sides.
24x^{2}+100x+100=-14x-32
Combine 25x^{2} and -x^{2} to get 24x^{2}.
24x^{2}+100x+100+14x=-32
Add 14x to both sides.
24x^{2}+114x+100=-32
Combine 100x and 14x to get 114x.
24x^{2}+114x=-32-100
Subtract 100 from both sides.
24x^{2}+114x=-132
Subtract 100 from -32 to get -132.
\frac{24x^{2}+114x}{24}=-\frac{132}{24}
Divide both sides by 24.
x^{2}+\frac{114}{24}x=-\frac{132}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}+\frac{19}{4}x=-\frac{132}{24}
Reduce the fraction \frac{114}{24} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{19}{4}x=-\frac{11}{2}
Reduce the fraction \frac{-132}{24} to lowest terms by extracting and canceling out 12.
x^{2}+\frac{19}{4}x+\left(\frac{19}{8}\right)^{2}=-\frac{11}{2}+\left(\frac{19}{8}\right)^{2}
Divide \frac{19}{4}, the coefficient of the x term, by 2 to get \frac{19}{8}. Then add the square of \frac{19}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{19}{4}x+\frac{361}{64}=-\frac{11}{2}+\frac{361}{64}
Square \frac{19}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{19}{4}x+\frac{361}{64}=\frac{9}{64}
Add -\frac{11}{2} to \frac{361}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{19}{8}\right)^{2}=\frac{9}{64}
Factor x^{2}+\frac{19}{4}x+\frac{361}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Take the square root of both sides of the equation.
x+\frac{19}{8}=\frac{3}{8} x+\frac{19}{8}=-\frac{3}{8}
Simplify.
x=-2 x=-\frac{11}{4}
Subtract \frac{19}{8} from both sides of the equation.