Solve for x
x=-\frac{4}{15}\approx -0.266666667
x = -\frac{16}{15} = -1\frac{1}{15} \approx -1.066666667
Graph
Share
Copied to clipboard
25\left(3x+2\right)^{2}-36+36=36
Add 36 to both sides of the equation.
25\left(3x+2\right)^{2}=36
Subtracting 36 from itself leaves 0.
\frac{25\left(3x+2\right)^{2}}{25}=\frac{36}{25}
Divide both sides by 25.
\left(3x+2\right)^{2}=\frac{36}{25}
Dividing by 25 undoes the multiplication by 25.
3x+2=\frac{6}{5} 3x+2=-\frac{6}{5}
Take the square root of both sides of the equation.
3x+2-2=\frac{6}{5}-2 3x+2-2=-\frac{6}{5}-2
Subtract 2 from both sides of the equation.
3x=\frac{6}{5}-2 3x=-\frac{6}{5}-2
Subtracting 2 from itself leaves 0.
3x=-\frac{4}{5}
Subtract 2 from \frac{6}{5}.
3x=-\frac{16}{5}
Subtract 2 from -\frac{6}{5}.
\frac{3x}{3}=-\frac{\frac{4}{5}}{3} \frac{3x}{3}=-\frac{\frac{16}{5}}{3}
Divide both sides by 3.
x=-\frac{\frac{4}{5}}{3} x=-\frac{\frac{16}{5}}{3}
Dividing by 3 undoes the multiplication by 3.
x=-\frac{4}{15}
Divide -\frac{4}{5} by 3.
x=-\frac{16}{15}
Divide -\frac{16}{5} by 3.
x=-\frac{4}{15} x=-\frac{16}{15}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}