Solve for a
a=\frac{\sqrt{14}}{5}-1\approx -0.251668523
a=-\frac{\sqrt{14}}{5}-1\approx -1.748331477
Share
Copied to clipboard
1+2a+a^{2}=\frac{14}{25}
Divide both sides by 25.
1+2a+a^{2}-\frac{14}{25}=0
Subtract \frac{14}{25} from both sides.
\frac{11}{25}+2a+a^{2}=0
Subtract \frac{14}{25} from 1 to get \frac{11}{25}.
a^{2}+2a+\frac{11}{25}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-2±\sqrt{2^{2}-4\times \frac{11}{25}}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and \frac{11}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-2±\sqrt{4-4\times \frac{11}{25}}}{2}
Square 2.
a=\frac{-2±\sqrt{4-\frac{44}{25}}}{2}
Multiply -4 times \frac{11}{25}.
a=\frac{-2±\sqrt{\frac{56}{25}}}{2}
Add 4 to -\frac{44}{25}.
a=\frac{-2±\frac{2\sqrt{14}}{5}}{2}
Take the square root of \frac{56}{25}.
a=\frac{\frac{2\sqrt{14}}{5}-2}{2}
Now solve the equation a=\frac{-2±\frac{2\sqrt{14}}{5}}{2} when ± is plus. Add -2 to \frac{2\sqrt{14}}{5}.
a=\frac{\sqrt{14}}{5}-1
Divide -2+\frac{2\sqrt{14}}{5} by 2.
a=\frac{-\frac{2\sqrt{14}}{5}-2}{2}
Now solve the equation a=\frac{-2±\frac{2\sqrt{14}}{5}}{2} when ± is minus. Subtract \frac{2\sqrt{14}}{5} from -2.
a=-\frac{\sqrt{14}}{5}-1
Divide -2-\frac{2\sqrt{14}}{5} by 2.
a=\frac{\sqrt{14}}{5}-1 a=-\frac{\sqrt{14}}{5}-1
The equation is now solved.
1+2a+a^{2}=\frac{14}{25}
Divide both sides by 25.
2a+a^{2}=\frac{14}{25}-1
Subtract 1 from both sides.
2a+a^{2}=-\frac{11}{25}
Subtract 1 from \frac{14}{25} to get -\frac{11}{25}.
a^{2}+2a=-\frac{11}{25}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
a^{2}+2a+1^{2}=-\frac{11}{25}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+2a+1=-\frac{11}{25}+1
Square 1.
a^{2}+2a+1=\frac{14}{25}
Add -\frac{11}{25} to 1.
\left(a+1\right)^{2}=\frac{14}{25}
Factor a^{2}+2a+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+1\right)^{2}}=\sqrt{\frac{14}{25}}
Take the square root of both sides of the equation.
a+1=\frac{\sqrt{14}}{5} a+1=-\frac{\sqrt{14}}{5}
Simplify.
a=\frac{\sqrt{14}}{5}-1 a=-\frac{\sqrt{14}}{5}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}