Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

25\left(-\frac{1}{5}\right)^{3}\left(a^{2}\right)^{3}b^{3}+\left(a^{3}b+4a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Expand \left(-\frac{1}{5}a^{2}b\right)^{3}.
25\left(-\frac{1}{5}\right)^{3}a^{6}b^{3}+\left(a^{3}b+4a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
25\left(-\frac{1}{125}\right)a^{6}b^{3}+\left(a^{3}b+4a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Calculate -\frac{1}{5} to the power of 3 and get -\frac{1}{125}.
-\frac{1}{5}a^{6}b^{3}+\left(a^{3}b+4a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Multiply 25 and -\frac{1}{125} to get -\frac{1}{5}.
-\frac{1}{5}a^{6}b^{3}+\left(5a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Combine a^{3}b and 4a^{3}b to get 5a^{3}b.
-\frac{1}{5}a^{6}b^{3}+5^{2}\left(a^{3}\right)^{2}b^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Expand \left(5a^{3}b\right)^{2}.
-\frac{1}{5}a^{6}b^{3}+5^{2}a^{6}b^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
-\frac{1}{5}a^{6}b^{3}+25a^{6}b^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Calculate 5 to the power of 2 and get 25.
-\frac{1}{5}a^{6}b^{3}-5a^{6}b^{2}b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Multiply 25 and -\frac{1}{5} to get -5.
-\frac{1}{5}a^{6}b^{3}-5a^{6}b^{3}+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Combine -\frac{1}{5}a^{6}b^{3} and -5a^{6}b^{3} to get -\frac{26}{5}a^{6}b^{3}.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{2}b\left(a^{2}\right)^{2}b^{2}
Expand \left(a^{2}b\right)^{2}.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{2}ba^{4}b^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{6}bb^{2}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{6}b^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-\frac{73}{15}a^{6}b^{3}
Combine -\frac{26}{5}a^{6}b^{3} and \frac{1}{3}a^{6}b^{3} to get -\frac{73}{15}a^{6}b^{3}.
25\left(-\frac{1}{5}\right)^{3}\left(a^{2}\right)^{3}b^{3}+\left(a^{3}b+4a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Expand \left(-\frac{1}{5}a^{2}b\right)^{3}.
25\left(-\frac{1}{5}\right)^{3}a^{6}b^{3}+\left(a^{3}b+4a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
25\left(-\frac{1}{125}\right)a^{6}b^{3}+\left(a^{3}b+4a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Calculate -\frac{1}{5} to the power of 3 and get -\frac{1}{125}.
-\frac{1}{5}a^{6}b^{3}+\left(a^{3}b+4a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Multiply 25 and -\frac{1}{125} to get -\frac{1}{5}.
-\frac{1}{5}a^{6}b^{3}+\left(5a^{3}b\right)^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Combine a^{3}b and 4a^{3}b to get 5a^{3}b.
-\frac{1}{5}a^{6}b^{3}+5^{2}\left(a^{3}\right)^{2}b^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Expand \left(5a^{3}b\right)^{2}.
-\frac{1}{5}a^{6}b^{3}+5^{2}a^{6}b^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
-\frac{1}{5}a^{6}b^{3}+25a^{6}b^{2}\left(-\frac{1}{5}\right)b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Calculate 5 to the power of 2 and get 25.
-\frac{1}{5}a^{6}b^{3}-5a^{6}b^{2}b+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Multiply 25 and -\frac{1}{5} to get -5.
-\frac{1}{5}a^{6}b^{3}-5a^{6}b^{3}+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{2}b\left(a^{2}b\right)^{2}
Combine -\frac{1}{5}a^{6}b^{3} and -5a^{6}b^{3} to get -\frac{26}{5}a^{6}b^{3}.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{2}b\left(a^{2}\right)^{2}b^{2}
Expand \left(a^{2}b\right)^{2}.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{2}ba^{4}b^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{6}bb^{2}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
-\frac{26}{5}a^{6}b^{3}+\frac{1}{3}a^{6}b^{3}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
-\frac{73}{15}a^{6}b^{3}
Combine -\frac{26}{5}a^{6}b^{3} and \frac{1}{3}a^{6}b^{3} to get -\frac{73}{15}a^{6}b^{3}.