Solve for x (complex solution)
x=\frac{48}{25}+\frac{36}{25}i=1.92+1.44i
x=\frac{48}{25}-\frac{36}{25}i=1.92-1.44i
Graph
Share
Copied to clipboard
25x^{2}-96x+144=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-96\right)±\sqrt{\left(-96\right)^{2}-4\times 25\times 144}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -96 for b, and 144 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-96\right)±\sqrt{9216-4\times 25\times 144}}{2\times 25}
Square -96.
x=\frac{-\left(-96\right)±\sqrt{9216-100\times 144}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-96\right)±\sqrt{9216-14400}}{2\times 25}
Multiply -100 times 144.
x=\frac{-\left(-96\right)±\sqrt{-5184}}{2\times 25}
Add 9216 to -14400.
x=\frac{-\left(-96\right)±72i}{2\times 25}
Take the square root of -5184.
x=\frac{96±72i}{2\times 25}
The opposite of -96 is 96.
x=\frac{96±72i}{50}
Multiply 2 times 25.
x=\frac{96+72i}{50}
Now solve the equation x=\frac{96±72i}{50} when ± is plus. Add 96 to 72i.
x=\frac{48}{25}+\frac{36}{25}i
Divide 96+72i by 50.
x=\frac{96-72i}{50}
Now solve the equation x=\frac{96±72i}{50} when ± is minus. Subtract 72i from 96.
x=\frac{48}{25}-\frac{36}{25}i
Divide 96-72i by 50.
x=\frac{48}{25}+\frac{36}{25}i x=\frac{48}{25}-\frac{36}{25}i
The equation is now solved.
25x^{2}-96x+144=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}-96x+144-144=-144
Subtract 144 from both sides of the equation.
25x^{2}-96x=-144
Subtracting 144 from itself leaves 0.
\frac{25x^{2}-96x}{25}=-\frac{144}{25}
Divide both sides by 25.
x^{2}-\frac{96}{25}x=-\frac{144}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{96}{25}x+\left(-\frac{48}{25}\right)^{2}=-\frac{144}{25}+\left(-\frac{48}{25}\right)^{2}
Divide -\frac{96}{25}, the coefficient of the x term, by 2 to get -\frac{48}{25}. Then add the square of -\frac{48}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{96}{25}x+\frac{2304}{625}=-\frac{144}{25}+\frac{2304}{625}
Square -\frac{48}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{96}{25}x+\frac{2304}{625}=-\frac{1296}{625}
Add -\frac{144}{25} to \frac{2304}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{48}{25}\right)^{2}=-\frac{1296}{625}
Factor x^{2}-\frac{96}{25}x+\frac{2304}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{48}{25}\right)^{2}}=\sqrt{-\frac{1296}{625}}
Take the square root of both sides of the equation.
x-\frac{48}{25}=\frac{36}{25}i x-\frac{48}{25}=-\frac{36}{25}i
Simplify.
x=\frac{48}{25}+\frac{36}{25}i x=\frac{48}{25}-\frac{36}{25}i
Add \frac{48}{25} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}