Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}-90x+87=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 25\times 87}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -90 for b, and 87 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 25\times 87}}{2\times 25}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100-100\times 87}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-90\right)±\sqrt{8100-8700}}{2\times 25}
Multiply -100 times 87.
x=\frac{-\left(-90\right)±\sqrt{-600}}{2\times 25}
Add 8100 to -8700.
x=\frac{-\left(-90\right)±10\sqrt{6}i}{2\times 25}
Take the square root of -600.
x=\frac{90±10\sqrt{6}i}{2\times 25}
The opposite of -90 is 90.
x=\frac{90±10\sqrt{6}i}{50}
Multiply 2 times 25.
x=\frac{90+10\sqrt{6}i}{50}
Now solve the equation x=\frac{90±10\sqrt{6}i}{50} when ± is plus. Add 90 to 10i\sqrt{6}.
x=\frac{9+\sqrt{6}i}{5}
Divide 90+10i\sqrt{6} by 50.
x=\frac{-10\sqrt{6}i+90}{50}
Now solve the equation x=\frac{90±10\sqrt{6}i}{50} when ± is minus. Subtract 10i\sqrt{6} from 90.
x=\frac{-\sqrt{6}i+9}{5}
Divide 90-10i\sqrt{6} by 50.
x=\frac{9+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i+9}{5}
The equation is now solved.
25x^{2}-90x+87=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}-90x+87-87=-87
Subtract 87 from both sides of the equation.
25x^{2}-90x=-87
Subtracting 87 from itself leaves 0.
\frac{25x^{2}-90x}{25}=-\frac{87}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{90}{25}\right)x=-\frac{87}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{18}{5}x=-\frac{87}{25}
Reduce the fraction \frac{-90}{25} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-\frac{87}{25}+\left(-\frac{9}{5}\right)^{2}
Divide -\frac{18}{5}, the coefficient of the x term, by 2 to get -\frac{9}{5}. Then add the square of -\frac{9}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{-87+81}{25}
Square -\frac{9}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{18}{5}x+\frac{81}{25}=-\frac{6}{25}
Add -\frac{87}{25} to \frac{81}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{5}\right)^{2}=-\frac{6}{25}
Factor x^{2}-\frac{18}{5}x+\frac{81}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{-\frac{6}{25}}
Take the square root of both sides of the equation.
x-\frac{9}{5}=\frac{\sqrt{6}i}{5} x-\frac{9}{5}=-\frac{\sqrt{6}i}{5}
Simplify.
x=\frac{9+\sqrt{6}i}{5} x=\frac{-\sqrt{6}i+9}{5}
Add \frac{9}{5} to both sides of the equation.