Solve for x
x = \frac{7}{5} = 1\frac{2}{5} = 1.4
x = \frac{11}{5} = 2\frac{1}{5} = 2.2
Graph
Share
Copied to clipboard
25x^{2}-90x+77=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 25\times 77}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -90 for b, and 77 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 25\times 77}}{2\times 25}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100-100\times 77}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-90\right)±\sqrt{8100-7700}}{2\times 25}
Multiply -100 times 77.
x=\frac{-\left(-90\right)±\sqrt{400}}{2\times 25}
Add 8100 to -7700.
x=\frac{-\left(-90\right)±20}{2\times 25}
Take the square root of 400.
x=\frac{90±20}{2\times 25}
The opposite of -90 is 90.
x=\frac{90±20}{50}
Multiply 2 times 25.
x=\frac{110}{50}
Now solve the equation x=\frac{90±20}{50} when ± is plus. Add 90 to 20.
x=\frac{11}{5}
Reduce the fraction \frac{110}{50} to lowest terms by extracting and canceling out 10.
x=\frac{70}{50}
Now solve the equation x=\frac{90±20}{50} when ± is minus. Subtract 20 from 90.
x=\frac{7}{5}
Reduce the fraction \frac{70}{50} to lowest terms by extracting and canceling out 10.
x=\frac{11}{5} x=\frac{7}{5}
The equation is now solved.
25x^{2}-90x+77=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}-90x+77-77=-77
Subtract 77 from both sides of the equation.
25x^{2}-90x=-77
Subtracting 77 from itself leaves 0.
\frac{25x^{2}-90x}{25}=-\frac{77}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{90}{25}\right)x=-\frac{77}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{18}{5}x=-\frac{77}{25}
Reduce the fraction \frac{-90}{25} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{18}{5}x+\left(-\frac{9}{5}\right)^{2}=-\frac{77}{25}+\left(-\frac{9}{5}\right)^{2}
Divide -\frac{18}{5}, the coefficient of the x term, by 2 to get -\frac{9}{5}. Then add the square of -\frac{9}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{-77+81}{25}
Square -\frac{9}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{18}{5}x+\frac{81}{25}=\frac{4}{25}
Add -\frac{77}{25} to \frac{81}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{5}\right)^{2}=\frac{4}{25}
Factor x^{2}-\frac{18}{5}x+\frac{81}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
Take the square root of both sides of the equation.
x-\frac{9}{5}=\frac{2}{5} x-\frac{9}{5}=-\frac{2}{5}
Simplify.
x=\frac{11}{5} x=\frac{7}{5}
Add \frac{9}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}