Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}-40x+23=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 25\times 23}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -40 for b, and 23 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 25\times 23}}{2\times 25}
Square -40.
x=\frac{-\left(-40\right)±\sqrt{1600-100\times 23}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-40\right)±\sqrt{1600-2300}}{2\times 25}
Multiply -100 times 23.
x=\frac{-\left(-40\right)±\sqrt{-700}}{2\times 25}
Add 1600 to -2300.
x=\frac{-\left(-40\right)±10\sqrt{7}i}{2\times 25}
Take the square root of -700.
x=\frac{40±10\sqrt{7}i}{2\times 25}
The opposite of -40 is 40.
x=\frac{40±10\sqrt{7}i}{50}
Multiply 2 times 25.
x=\frac{40+10\sqrt{7}i}{50}
Now solve the equation x=\frac{40±10\sqrt{7}i}{50} when ± is plus. Add 40 to 10i\sqrt{7}.
x=\frac{4+\sqrt{7}i}{5}
Divide 40+10i\sqrt{7} by 50.
x=\frac{-10\sqrt{7}i+40}{50}
Now solve the equation x=\frac{40±10\sqrt{7}i}{50} when ± is minus. Subtract 10i\sqrt{7} from 40.
x=\frac{-\sqrt{7}i+4}{5}
Divide 40-10i\sqrt{7} by 50.
x=\frac{4+\sqrt{7}i}{5} x=\frac{-\sqrt{7}i+4}{5}
The equation is now solved.
25x^{2}-40x+23=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}-40x+23-23=-23
Subtract 23 from both sides of the equation.
25x^{2}-40x=-23
Subtracting 23 from itself leaves 0.
\frac{25x^{2}-40x}{25}=-\frac{23}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{40}{25}\right)x=-\frac{23}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{8}{5}x=-\frac{23}{25}
Reduce the fraction \frac{-40}{25} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{23}{25}+\left(-\frac{4}{5}\right)^{2}
Divide -\frac{8}{5}, the coefficient of the x term, by 2 to get -\frac{4}{5}. Then add the square of -\frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{5}x+\frac{16}{25}=\frac{-23+16}{25}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{7}{25}
Add -\frac{23}{25} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{5}\right)^{2}=-\frac{7}{25}
Factor x^{2}-\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{-\frac{7}{25}}
Take the square root of both sides of the equation.
x-\frac{4}{5}=\frac{\sqrt{7}i}{5} x-\frac{4}{5}=-\frac{\sqrt{7}i}{5}
Simplify.
x=\frac{4+\sqrt{7}i}{5} x=\frac{-\sqrt{7}i+4}{5}
Add \frac{4}{5} to both sides of the equation.