Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}-30x+18-9=0
Subtract 9 from both sides.
25x^{2}-30x+9=0
Subtract 9 from 18 to get 9.
a+b=-30 ab=25\times 9=225
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25x^{2}+ax+bx+9. To find a and b, set up a system to be solved.
-1,-225 -3,-75 -5,-45 -9,-25 -15,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 225.
-1-225=-226 -3-75=-78 -5-45=-50 -9-25=-34 -15-15=-30
Calculate the sum for each pair.
a=-15 b=-15
The solution is the pair that gives sum -30.
\left(25x^{2}-15x\right)+\left(-15x+9\right)
Rewrite 25x^{2}-30x+9 as \left(25x^{2}-15x\right)+\left(-15x+9\right).
5x\left(5x-3\right)-3\left(5x-3\right)
Factor out 5x in the first and -3 in the second group.
\left(5x-3\right)\left(5x-3\right)
Factor out common term 5x-3 by using distributive property.
\left(5x-3\right)^{2}
Rewrite as a binomial square.
x=\frac{3}{5}
To find equation solution, solve 5x-3=0.
25x^{2}-30x+18=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
25x^{2}-30x+18-9=9-9
Subtract 9 from both sides of the equation.
25x^{2}-30x+18-9=0
Subtracting 9 from itself leaves 0.
25x^{2}-30x+9=0
Subtract 9 from 18.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 25\times 9}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -30 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 25\times 9}}{2\times 25}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-100\times 9}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-30\right)±\sqrt{900-900}}{2\times 25}
Multiply -100 times 9.
x=\frac{-\left(-30\right)±\sqrt{0}}{2\times 25}
Add 900 to -900.
x=-\frac{-30}{2\times 25}
Take the square root of 0.
x=\frac{30}{2\times 25}
The opposite of -30 is 30.
x=\frac{30}{50}
Multiply 2 times 25.
x=\frac{3}{5}
Reduce the fraction \frac{30}{50} to lowest terms by extracting and canceling out 10.
25x^{2}-30x+18=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}-30x+18-18=9-18
Subtract 18 from both sides of the equation.
25x^{2}-30x=9-18
Subtracting 18 from itself leaves 0.
25x^{2}-30x=-9
Subtract 18 from 9.
\frac{25x^{2}-30x}{25}=-\frac{9}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{30}{25}\right)x=-\frac{9}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{6}{5}x=-\frac{9}{25}
Reduce the fraction \frac{-30}{25} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=-\frac{9}{25}+\left(-\frac{3}{5}\right)^{2}
Divide -\frac{6}{5}, the coefficient of the x term, by 2 to get -\frac{3}{5}. Then add the square of -\frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{-9+9}{25}
Square -\frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{6}{5}x+\frac{9}{25}=0
Add -\frac{9}{25} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{5}\right)^{2}=0
Factor x^{2}-\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-\frac{3}{5}=0 x-\frac{3}{5}=0
Simplify.
x=\frac{3}{5} x=\frac{3}{5}
Add \frac{3}{5} to both sides of the equation.
x=\frac{3}{5}
The equation is now solved. Solutions are the same.