Factor
\left(5x-1\right)\left(5x+8\right)
Evaluate
\left(5x-1\right)\left(5x+8\right)
Graph
Share
Copied to clipboard
25x^{2}+35x-8
Multiply and combine like terms.
a+b=35 ab=25\left(-8\right)=-200
Factor the expression by grouping. First, the expression needs to be rewritten as 25x^{2}+ax+bx-8. To find a and b, set up a system to be solved.
-1,200 -2,100 -4,50 -5,40 -8,25 -10,20
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -200.
-1+200=199 -2+100=98 -4+50=46 -5+40=35 -8+25=17 -10+20=10
Calculate the sum for each pair.
a=-5 b=40
The solution is the pair that gives sum 35.
\left(25x^{2}-5x\right)+\left(40x-8\right)
Rewrite 25x^{2}+35x-8 as \left(25x^{2}-5x\right)+\left(40x-8\right).
5x\left(5x-1\right)+8\left(5x-1\right)
Factor out 5x in the first and 8 in the second group.
\left(5x-1\right)\left(5x+8\right)
Factor out common term 5x-1 by using distributive property.
25x^{2}-8+35x
Subtract 7 from -1 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}