Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}-5x=8
Subtract 5x from both sides.
25x^{2}-5x-8=0
Subtract 8 from both sides.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 25\left(-8\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -5 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 25\left(-8\right)}}{2\times 25}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-100\left(-8\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-5\right)±\sqrt{25+800}}{2\times 25}
Multiply -100 times -8.
x=\frac{-\left(-5\right)±\sqrt{825}}{2\times 25}
Add 25 to 800.
x=\frac{-\left(-5\right)±5\sqrt{33}}{2\times 25}
Take the square root of 825.
x=\frac{5±5\sqrt{33}}{2\times 25}
The opposite of -5 is 5.
x=\frac{5±5\sqrt{33}}{50}
Multiply 2 times 25.
x=\frac{5\sqrt{33}+5}{50}
Now solve the equation x=\frac{5±5\sqrt{33}}{50} when ± is plus. Add 5 to 5\sqrt{33}.
x=\frac{\sqrt{33}+1}{10}
Divide 5+5\sqrt{33} by 50.
x=\frac{5-5\sqrt{33}}{50}
Now solve the equation x=\frac{5±5\sqrt{33}}{50} when ± is minus. Subtract 5\sqrt{33} from 5.
x=\frac{1-\sqrt{33}}{10}
Divide 5-5\sqrt{33} by 50.
x=\frac{\sqrt{33}+1}{10} x=\frac{1-\sqrt{33}}{10}
The equation is now solved.
25x^{2}-5x=8
Subtract 5x from both sides.
\frac{25x^{2}-5x}{25}=\frac{8}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{5}{25}\right)x=\frac{8}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-\frac{1}{5}x=\frac{8}{25}
Reduce the fraction \frac{-5}{25} to lowest terms by extracting and canceling out 5.
x^{2}-\frac{1}{5}x+\left(-\frac{1}{10}\right)^{2}=\frac{8}{25}+\left(-\frac{1}{10}\right)^{2}
Divide -\frac{1}{5}, the coefficient of the x term, by 2 to get -\frac{1}{10}. Then add the square of -\frac{1}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{8}{25}+\frac{1}{100}
Square -\frac{1}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{5}x+\frac{1}{100}=\frac{33}{100}
Add \frac{8}{25} to \frac{1}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{10}\right)^{2}=\frac{33}{100}
Factor x^{2}-\frac{1}{5}x+\frac{1}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{10}\right)^{2}}=\sqrt{\frac{33}{100}}
Take the square root of both sides of the equation.
x-\frac{1}{10}=\frac{\sqrt{33}}{10} x-\frac{1}{10}=-\frac{\sqrt{33}}{10}
Simplify.
x=\frac{\sqrt{33}+1}{10} x=\frac{1-\sqrt{33}}{10}
Add \frac{1}{10} to both sides of the equation.