Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}=16x^{2}+\frac{11664}{25}
Calculate \frac{108}{5} to the power of 2 and get \frac{11664}{25}.
25x^{2}-16x^{2}=\frac{11664}{25}
Subtract 16x^{2} from both sides.
9x^{2}=\frac{11664}{25}
Combine 25x^{2} and -16x^{2} to get 9x^{2}.
9x^{2}-\frac{11664}{25}=0
Subtract \frac{11664}{25} from both sides.
25x^{2}-1296=0
Divide both sides by \frac{9}{25}.
\left(5x-36\right)\left(5x+36\right)=0
Consider 25x^{2}-1296. Rewrite 25x^{2}-1296 as \left(5x\right)^{2}-36^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{36}{5} x=-\frac{36}{5}
To find equation solutions, solve 5x-36=0 and 5x+36=0.
25x^{2}=16x^{2}+\frac{11664}{25}
Calculate \frac{108}{5} to the power of 2 and get \frac{11664}{25}.
25x^{2}-16x^{2}=\frac{11664}{25}
Subtract 16x^{2} from both sides.
9x^{2}=\frac{11664}{25}
Combine 25x^{2} and -16x^{2} to get 9x^{2}.
x^{2}=\frac{\frac{11664}{25}}{9}
Divide both sides by 9.
x^{2}=\frac{11664}{25\times 9}
Express \frac{\frac{11664}{25}}{9} as a single fraction.
x^{2}=\frac{11664}{225}
Multiply 25 and 9 to get 225.
x^{2}=\frac{1296}{25}
Reduce the fraction \frac{11664}{225} to lowest terms by extracting and canceling out 9.
x=\frac{36}{5} x=-\frac{36}{5}
Take the square root of both sides of the equation.
25x^{2}=16x^{2}+\frac{11664}{25}
Calculate \frac{108}{5} to the power of 2 and get \frac{11664}{25}.
25x^{2}-16x^{2}=\frac{11664}{25}
Subtract 16x^{2} from both sides.
9x^{2}=\frac{11664}{25}
Combine 25x^{2} and -16x^{2} to get 9x^{2}.
9x^{2}-\frac{11664}{25}=0
Subtract \frac{11664}{25} from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 9\left(-\frac{11664}{25}\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 0 for b, and -\frac{11664}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 9\left(-\frac{11664}{25}\right)}}{2\times 9}
Square 0.
x=\frac{0±\sqrt{-36\left(-\frac{11664}{25}\right)}}{2\times 9}
Multiply -4 times 9.
x=\frac{0±\sqrt{\frac{419904}{25}}}{2\times 9}
Multiply -36 times -\frac{11664}{25}.
x=\frac{0±\frac{648}{5}}{2\times 9}
Take the square root of \frac{419904}{25}.
x=\frac{0±\frac{648}{5}}{18}
Multiply 2 times 9.
x=\frac{36}{5}
Now solve the equation x=\frac{0±\frac{648}{5}}{18} when ± is plus.
x=-\frac{36}{5}
Now solve the equation x=\frac{0±\frac{648}{5}}{18} when ± is minus.
x=\frac{36}{5} x=-\frac{36}{5}
The equation is now solved.