Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}+97-100x=0
Subtract 100x from both sides.
25x^{2}-100x+97=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-100\right)±\sqrt{\left(-100\right)^{2}-4\times 25\times 97}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -100 for b, and 97 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-100\right)±\sqrt{10000-4\times 25\times 97}}{2\times 25}
Square -100.
x=\frac{-\left(-100\right)±\sqrt{10000-100\times 97}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-100\right)±\sqrt{10000-9700}}{2\times 25}
Multiply -100 times 97.
x=\frac{-\left(-100\right)±\sqrt{300}}{2\times 25}
Add 10000 to -9700.
x=\frac{-\left(-100\right)±10\sqrt{3}}{2\times 25}
Take the square root of 300.
x=\frac{100±10\sqrt{3}}{2\times 25}
The opposite of -100 is 100.
x=\frac{100±10\sqrt{3}}{50}
Multiply 2 times 25.
x=\frac{10\sqrt{3}+100}{50}
Now solve the equation x=\frac{100±10\sqrt{3}}{50} when ± is plus. Add 100 to 10\sqrt{3}.
x=\frac{\sqrt{3}}{5}+2
Divide 100+10\sqrt{3} by 50.
x=\frac{100-10\sqrt{3}}{50}
Now solve the equation x=\frac{100±10\sqrt{3}}{50} when ± is minus. Subtract 10\sqrt{3} from 100.
x=-\frac{\sqrt{3}}{5}+2
Divide 100-10\sqrt{3} by 50.
x=\frac{\sqrt{3}}{5}+2 x=-\frac{\sqrt{3}}{5}+2
The equation is now solved.
25x^{2}+97-100x=0
Subtract 100x from both sides.
25x^{2}-100x=-97
Subtract 97 from both sides. Anything subtracted from zero gives its negation.
\frac{25x^{2}-100x}{25}=-\frac{97}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{100}{25}\right)x=-\frac{97}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-4x=-\frac{97}{25}
Divide -100 by 25.
x^{2}-4x+\left(-2\right)^{2}=-\frac{97}{25}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{97}{25}+4
Square -2.
x^{2}-4x+4=\frac{3}{25}
Add -\frac{97}{25} to 4.
\left(x-2\right)^{2}=\frac{3}{25}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{3}{25}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{3}}{5} x-2=-\frac{\sqrt{3}}{5}
Simplify.
x=\frac{\sqrt{3}}{5}+2 x=-\frac{\sqrt{3}}{5}+2
Add 2 to both sides of the equation.