Solve for x
x=\frac{\sqrt{1671}-36}{25}\approx 0.195114675
x=\frac{-\sqrt{1671}-36}{25}\approx -3.075114675
Graph
Share
Copied to clipboard
25x^{2}+72x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-72±\sqrt{72^{2}-4\times 25\left(-15\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 72 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72±\sqrt{5184-4\times 25\left(-15\right)}}{2\times 25}
Square 72.
x=\frac{-72±\sqrt{5184-100\left(-15\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-72±\sqrt{5184+1500}}{2\times 25}
Multiply -100 times -15.
x=\frac{-72±\sqrt{6684}}{2\times 25}
Add 5184 to 1500.
x=\frac{-72±2\sqrt{1671}}{2\times 25}
Take the square root of 6684.
x=\frac{-72±2\sqrt{1671}}{50}
Multiply 2 times 25.
x=\frac{2\sqrt{1671}-72}{50}
Now solve the equation x=\frac{-72±2\sqrt{1671}}{50} when ± is plus. Add -72 to 2\sqrt{1671}.
x=\frac{\sqrt{1671}-36}{25}
Divide -72+2\sqrt{1671} by 50.
x=\frac{-2\sqrt{1671}-72}{50}
Now solve the equation x=\frac{-72±2\sqrt{1671}}{50} when ± is minus. Subtract 2\sqrt{1671} from -72.
x=\frac{-\sqrt{1671}-36}{25}
Divide -72-2\sqrt{1671} by 50.
x=\frac{\sqrt{1671}-36}{25} x=\frac{-\sqrt{1671}-36}{25}
The equation is now solved.
25x^{2}+72x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}+72x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
25x^{2}+72x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
25x^{2}+72x=15
Subtract -15 from 0.
\frac{25x^{2}+72x}{25}=\frac{15}{25}
Divide both sides by 25.
x^{2}+\frac{72}{25}x=\frac{15}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+\frac{72}{25}x=\frac{3}{5}
Reduce the fraction \frac{15}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{72}{25}x+\left(\frac{36}{25}\right)^{2}=\frac{3}{5}+\left(\frac{36}{25}\right)^{2}
Divide \frac{72}{25}, the coefficient of the x term, by 2 to get \frac{36}{25}. Then add the square of \frac{36}{25} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{72}{25}x+\frac{1296}{625}=\frac{3}{5}+\frac{1296}{625}
Square \frac{36}{25} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{72}{25}x+\frac{1296}{625}=\frac{1671}{625}
Add \frac{3}{5} to \frac{1296}{625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{36}{25}\right)^{2}=\frac{1671}{625}
Factor x^{2}+\frac{72}{25}x+\frac{1296}{625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{36}{25}\right)^{2}}=\sqrt{\frac{1671}{625}}
Take the square root of both sides of the equation.
x+\frac{36}{25}=\frac{\sqrt{1671}}{25} x+\frac{36}{25}=-\frac{\sqrt{1671}}{25}
Simplify.
x=\frac{\sqrt{1671}-36}{25} x=\frac{-\sqrt{1671}-36}{25}
Subtract \frac{36}{25} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}