Factor
\left(5x-2\right)\left(5x+3\right)
Evaluate
\left(5x-2\right)\left(5x+3\right)
Graph
Share
Copied to clipboard
a+b=5 ab=25\left(-6\right)=-150
Factor the expression by grouping. First, the expression needs to be rewritten as 25x^{2}+ax+bx-6. To find a and b, set up a system to be solved.
-1,150 -2,75 -3,50 -5,30 -6,25 -10,15
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -150.
-1+150=149 -2+75=73 -3+50=47 -5+30=25 -6+25=19 -10+15=5
Calculate the sum for each pair.
a=-10 b=15
The solution is the pair that gives sum 5.
\left(25x^{2}-10x\right)+\left(15x-6\right)
Rewrite 25x^{2}+5x-6 as \left(25x^{2}-10x\right)+\left(15x-6\right).
5x\left(5x-2\right)+3\left(5x-2\right)
Factor out 5x in the first and 3 in the second group.
\left(5x-2\right)\left(5x+3\right)
Factor out common term 5x-2 by using distributive property.
25x^{2}+5x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 25\left(-6\right)}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\times 25\left(-6\right)}}{2\times 25}
Square 5.
x=\frac{-5±\sqrt{25-100\left(-6\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-5±\sqrt{25+600}}{2\times 25}
Multiply -100 times -6.
x=\frac{-5±\sqrt{625}}{2\times 25}
Add 25 to 600.
x=\frac{-5±25}{2\times 25}
Take the square root of 625.
x=\frac{-5±25}{50}
Multiply 2 times 25.
x=\frac{20}{50}
Now solve the equation x=\frac{-5±25}{50} when ± is plus. Add -5 to 25.
x=\frac{2}{5}
Reduce the fraction \frac{20}{50} to lowest terms by extracting and canceling out 10.
x=-\frac{30}{50}
Now solve the equation x=\frac{-5±25}{50} when ± is minus. Subtract 25 from -5.
x=-\frac{3}{5}
Reduce the fraction \frac{-30}{50} to lowest terms by extracting and canceling out 10.
25x^{2}+5x-6=25\left(x-\frac{2}{5}\right)\left(x-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{2}{5} for x_{1} and -\frac{3}{5} for x_{2}.
25x^{2}+5x-6=25\left(x-\frac{2}{5}\right)\left(x+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
25x^{2}+5x-6=25\times \frac{5x-2}{5}\left(x+\frac{3}{5}\right)
Subtract \frac{2}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
25x^{2}+5x-6=25\times \frac{5x-2}{5}\times \frac{5x+3}{5}
Add \frac{3}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
25x^{2}+5x-6=25\times \frac{\left(5x-2\right)\left(5x+3\right)}{5\times 5}
Multiply \frac{5x-2}{5} times \frac{5x+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
25x^{2}+5x-6=25\times \frac{\left(5x-2\right)\left(5x+3\right)}{25}
Multiply 5 times 5.
25x^{2}+5x-6=\left(5x-2\right)\left(5x+3\right)
Cancel out 25, the greatest common factor in 25 and 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}