Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=58 ab=25\times 16=400
Factor the expression by grouping. First, the expression needs to be rewritten as 25x^{2}+ax+bx+16. To find a and b, set up a system to be solved.
1,400 2,200 4,100 5,80 8,50 10,40 16,25 20,20
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 400.
1+400=401 2+200=202 4+100=104 5+80=85 8+50=58 10+40=50 16+25=41 20+20=40
Calculate the sum for each pair.
a=8 b=50
The solution is the pair that gives sum 58.
\left(25x^{2}+8x\right)+\left(50x+16\right)
Rewrite 25x^{2}+58x+16 as \left(25x^{2}+8x\right)+\left(50x+16\right).
x\left(25x+8\right)+2\left(25x+8\right)
Factor out x in the first and 2 in the second group.
\left(25x+8\right)\left(x+2\right)
Factor out common term 25x+8 by using distributive property.
25x^{2}+58x+16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-58±\sqrt{58^{2}-4\times 25\times 16}}{2\times 25}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-58±\sqrt{3364-4\times 25\times 16}}{2\times 25}
Square 58.
x=\frac{-58±\sqrt{3364-100\times 16}}{2\times 25}
Multiply -4 times 25.
x=\frac{-58±\sqrt{3364-1600}}{2\times 25}
Multiply -100 times 16.
x=\frac{-58±\sqrt{1764}}{2\times 25}
Add 3364 to -1600.
x=\frac{-58±42}{2\times 25}
Take the square root of 1764.
x=\frac{-58±42}{50}
Multiply 2 times 25.
x=-\frac{16}{50}
Now solve the equation x=\frac{-58±42}{50} when ± is plus. Add -58 to 42.
x=-\frac{8}{25}
Reduce the fraction \frac{-16}{50} to lowest terms by extracting and canceling out 2.
x=-\frac{100}{50}
Now solve the equation x=\frac{-58±42}{50} when ± is minus. Subtract 42 from -58.
x=-2
Divide -100 by 50.
25x^{2}+58x+16=25\left(x-\left(-\frac{8}{25}\right)\right)\left(x-\left(-2\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{8}{25} for x_{1} and -2 for x_{2}.
25x^{2}+58x+16=25\left(x+\frac{8}{25}\right)\left(x+2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
25x^{2}+58x+16=25\times \frac{25x+8}{25}\left(x+2\right)
Add \frac{8}{25} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
25x^{2}+58x+16=\left(25x+8\right)\left(x+2\right)
Cancel out 25, the greatest common factor in 25 and 25.