Solve for x
x=\frac{\sqrt{21}-3}{5}\approx 0.316515139
x=\frac{-\sqrt{21}-3}{5}\approx -1.516515139
Graph
Share
Copied to clipboard
25x^{2}+30x=12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
25x^{2}+30x-12=12-12
Subtract 12 from both sides of the equation.
25x^{2}+30x-12=0
Subtracting 12 from itself leaves 0.
x=\frac{-30±\sqrt{30^{2}-4\times 25\left(-12\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 30 for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 25\left(-12\right)}}{2\times 25}
Square 30.
x=\frac{-30±\sqrt{900-100\left(-12\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-30±\sqrt{900+1200}}{2\times 25}
Multiply -100 times -12.
x=\frac{-30±\sqrt{2100}}{2\times 25}
Add 900 to 1200.
x=\frac{-30±10\sqrt{21}}{2\times 25}
Take the square root of 2100.
x=\frac{-30±10\sqrt{21}}{50}
Multiply 2 times 25.
x=\frac{10\sqrt{21}-30}{50}
Now solve the equation x=\frac{-30±10\sqrt{21}}{50} when ± is plus. Add -30 to 10\sqrt{21}.
x=\frac{\sqrt{21}-3}{5}
Divide -30+10\sqrt{21} by 50.
x=\frac{-10\sqrt{21}-30}{50}
Now solve the equation x=\frac{-30±10\sqrt{21}}{50} when ± is minus. Subtract 10\sqrt{21} from -30.
x=\frac{-\sqrt{21}-3}{5}
Divide -30-10\sqrt{21} by 50.
x=\frac{\sqrt{21}-3}{5} x=\frac{-\sqrt{21}-3}{5}
The equation is now solved.
25x^{2}+30x=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25x^{2}+30x}{25}=\frac{12}{25}
Divide both sides by 25.
x^{2}+\frac{30}{25}x=\frac{12}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+\frac{6}{5}x=\frac{12}{25}
Reduce the fraction \frac{30}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{12}{25}+\left(\frac{3}{5}\right)^{2}
Divide \frac{6}{5}, the coefficient of the x term, by 2 to get \frac{3}{5}. Then add the square of \frac{3}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{12+9}{25}
Square \frac{3}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{21}{25}
Add \frac{12}{25} to \frac{9}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{5}\right)^{2}=\frac{21}{25}
Factor x^{2}+\frac{6}{5}x+\frac{9}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{21}{25}}
Take the square root of both sides of the equation.
x+\frac{3}{5}=\frac{\sqrt{21}}{5} x+\frac{3}{5}=-\frac{\sqrt{21}}{5}
Simplify.
x=\frac{\sqrt{21}-3}{5} x=\frac{-\sqrt{21}-3}{5}
Subtract \frac{3}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}