Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

25x^{2}+20x+12=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-20±\sqrt{20^{2}-4\times 25\times 12}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 20 for b, and 12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 25\times 12}}{2\times 25}
Square 20.
x=\frac{-20±\sqrt{400-100\times 12}}{2\times 25}
Multiply -4 times 25.
x=\frac{-20±\sqrt{400-1200}}{2\times 25}
Multiply -100 times 12.
x=\frac{-20±\sqrt{-800}}{2\times 25}
Add 400 to -1200.
x=\frac{-20±20\sqrt{2}i}{2\times 25}
Take the square root of -800.
x=\frac{-20±20\sqrt{2}i}{50}
Multiply 2 times 25.
x=\frac{-20+20\sqrt{2}i}{50}
Now solve the equation x=\frac{-20±20\sqrt{2}i}{50} when ± is plus. Add -20 to 20i\sqrt{2}.
x=\frac{-2+2\sqrt{2}i}{5}
Divide -20+20i\sqrt{2} by 50.
x=\frac{-20\sqrt{2}i-20}{50}
Now solve the equation x=\frac{-20±20\sqrt{2}i}{50} when ± is minus. Subtract 20i\sqrt{2} from -20.
x=\frac{-2\sqrt{2}i-2}{5}
Divide -20-20i\sqrt{2} by 50.
x=\frac{-2+2\sqrt{2}i}{5} x=\frac{-2\sqrt{2}i-2}{5}
The equation is now solved.
25x^{2}+20x+12=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}+20x+12-12=-12
Subtract 12 from both sides of the equation.
25x^{2}+20x=-12
Subtracting 12 from itself leaves 0.
\frac{25x^{2}+20x}{25}=-\frac{12}{25}
Divide both sides by 25.
x^{2}+\frac{20}{25}x=-\frac{12}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+\frac{4}{5}x=-\frac{12}{25}
Reduce the fraction \frac{20}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{4}{5}x+\left(\frac{2}{5}\right)^{2}=-\frac{12}{25}+\left(\frac{2}{5}\right)^{2}
Divide \frac{4}{5}, the coefficient of the x term, by 2 to get \frac{2}{5}. Then add the square of \frac{2}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{5}x+\frac{4}{25}=\frac{-12+4}{25}
Square \frac{2}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{5}x+\frac{4}{25}=-\frac{8}{25}
Add -\frac{12}{25} to \frac{4}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{5}\right)^{2}=-\frac{8}{25}
Factor x^{2}+\frac{4}{5}x+\frac{4}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{5}\right)^{2}}=\sqrt{-\frac{8}{25}}
Take the square root of both sides of the equation.
x+\frac{2}{5}=\frac{2\sqrt{2}i}{5} x+\frac{2}{5}=-\frac{2\sqrt{2}i}{5}
Simplify.
x=\frac{-2+2\sqrt{2}i}{5} x=\frac{-2\sqrt{2}i-2}{5}
Subtract \frac{2}{5} from both sides of the equation.