Solve for x
x=-4
x=-\frac{3}{5}=-0.6
Graph
Share
Copied to clipboard
25x^{2}+115x+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-115±\sqrt{115^{2}-4\times 25\times 60}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 115 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-115±\sqrt{13225-4\times 25\times 60}}{2\times 25}
Square 115.
x=\frac{-115±\sqrt{13225-100\times 60}}{2\times 25}
Multiply -4 times 25.
x=\frac{-115±\sqrt{13225-6000}}{2\times 25}
Multiply -100 times 60.
x=\frac{-115±\sqrt{7225}}{2\times 25}
Add 13225 to -6000.
x=\frac{-115±85}{2\times 25}
Take the square root of 7225.
x=\frac{-115±85}{50}
Multiply 2 times 25.
x=-\frac{30}{50}
Now solve the equation x=\frac{-115±85}{50} when ± is plus. Add -115 to 85.
x=-\frac{3}{5}
Reduce the fraction \frac{-30}{50} to lowest terms by extracting and canceling out 10.
x=-\frac{200}{50}
Now solve the equation x=\frac{-115±85}{50} when ± is minus. Subtract 85 from -115.
x=-4
Divide -200 by 50.
x=-\frac{3}{5} x=-4
The equation is now solved.
25x^{2}+115x+60=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
25x^{2}+115x+60-60=-60
Subtract 60 from both sides of the equation.
25x^{2}+115x=-60
Subtracting 60 from itself leaves 0.
\frac{25x^{2}+115x}{25}=-\frac{60}{25}
Divide both sides by 25.
x^{2}+\frac{115}{25}x=-\frac{60}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}+\frac{23}{5}x=-\frac{60}{25}
Reduce the fraction \frac{115}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{23}{5}x=-\frac{12}{5}
Reduce the fraction \frac{-60}{25} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{23}{5}x+\left(\frac{23}{10}\right)^{2}=-\frac{12}{5}+\left(\frac{23}{10}\right)^{2}
Divide \frac{23}{5}, the coefficient of the x term, by 2 to get \frac{23}{10}. Then add the square of \frac{23}{10} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{23}{5}x+\frac{529}{100}=-\frac{12}{5}+\frac{529}{100}
Square \frac{23}{10} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{23}{5}x+\frac{529}{100}=\frac{289}{100}
Add -\frac{12}{5} to \frac{529}{100} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{23}{10}\right)^{2}=\frac{289}{100}
Factor x^{2}+\frac{23}{5}x+\frac{529}{100}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{10}\right)^{2}}=\sqrt{\frac{289}{100}}
Take the square root of both sides of the equation.
x+\frac{23}{10}=\frac{17}{10} x+\frac{23}{10}=-\frac{17}{10}
Simplify.
x=-\frac{3}{5} x=-4
Subtract \frac{23}{10} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}