Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x^{2}=\frac{15.6}{25}
Divide both sides by 25.
x^{2}=\frac{156}{250}
Expand \frac{15.6}{25} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{78}{125}
Reduce the fraction \frac{156}{250} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{390}}{25} x=-\frac{\sqrt{390}}{25}
Take the square root of both sides of the equation.
x^{2}=\frac{15.6}{25}
Divide both sides by 25.
x^{2}=\frac{156}{250}
Expand \frac{15.6}{25} by multiplying both numerator and the denominator by 10.
x^{2}=\frac{78}{125}
Reduce the fraction \frac{156}{250} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{78}{125}=0
Subtract \frac{78}{125} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{78}{125}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{78}{125} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{78}{125}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{312}{125}}}{2}
Multiply -4 times -\frac{78}{125}.
x=\frac{0±\frac{2\sqrt{390}}{25}}{2}
Take the square root of \frac{312}{125}.
x=\frac{\sqrt{390}}{25}
Now solve the equation x=\frac{0±\frac{2\sqrt{390}}{25}}{2} when ± is plus.
x=-\frac{\sqrt{390}}{25}
Now solve the equation x=\frac{0±\frac{2\sqrt{390}}{25}}{2} when ± is minus.
x=\frac{\sqrt{390}}{25} x=-\frac{\sqrt{390}}{25}
The equation is now solved.