Solve for x
x=\frac{1}{5}=0.2
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
Graph
Share
Copied to clipboard
25\left(1-x\right)^{2}=16
Multiply 1-x and 1-x to get \left(1-x\right)^{2}.
25\left(1-2x+x^{2}\right)=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
25-50x+25x^{2}=16
Use the distributive property to multiply 25 by 1-2x+x^{2}.
25-50x+25x^{2}-16=0
Subtract 16 from both sides.
9-50x+25x^{2}=0
Subtract 16 from 25 to get 9.
25x^{2}-50x+9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-50\right)±\sqrt{\left(-50\right)^{2}-4\times 25\times 9}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -50 for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-50\right)±\sqrt{2500-4\times 25\times 9}}{2\times 25}
Square -50.
x=\frac{-\left(-50\right)±\sqrt{2500-100\times 9}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-50\right)±\sqrt{2500-900}}{2\times 25}
Multiply -100 times 9.
x=\frac{-\left(-50\right)±\sqrt{1600}}{2\times 25}
Add 2500 to -900.
x=\frac{-\left(-50\right)±40}{2\times 25}
Take the square root of 1600.
x=\frac{50±40}{2\times 25}
The opposite of -50 is 50.
x=\frac{50±40}{50}
Multiply 2 times 25.
x=\frac{90}{50}
Now solve the equation x=\frac{50±40}{50} when ± is plus. Add 50 to 40.
x=\frac{9}{5}
Reduce the fraction \frac{90}{50} to lowest terms by extracting and canceling out 10.
x=\frac{10}{50}
Now solve the equation x=\frac{50±40}{50} when ± is minus. Subtract 40 from 50.
x=\frac{1}{5}
Reduce the fraction \frac{10}{50} to lowest terms by extracting and canceling out 10.
x=\frac{9}{5} x=\frac{1}{5}
The equation is now solved.
25\left(1-x\right)^{2}=16
Multiply 1-x and 1-x to get \left(1-x\right)^{2}.
25\left(1-2x+x^{2}\right)=16
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
25-50x+25x^{2}=16
Use the distributive property to multiply 25 by 1-2x+x^{2}.
-50x+25x^{2}=16-25
Subtract 25 from both sides.
-50x+25x^{2}=-9
Subtract 25 from 16 to get -9.
25x^{2}-50x=-9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{25x^{2}-50x}{25}=-\frac{9}{25}
Divide both sides by 25.
x^{2}+\left(-\frac{50}{25}\right)x=-\frac{9}{25}
Dividing by 25 undoes the multiplication by 25.
x^{2}-2x=-\frac{9}{25}
Divide -50 by 25.
x^{2}-2x+1=-\frac{9}{25}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{16}{25}
Add -\frac{9}{25} to 1.
\left(x-1\right)^{2}=\frac{16}{25}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{16}{25}}
Take the square root of both sides of the equation.
x-1=\frac{4}{5} x-1=-\frac{4}{5}
Simplify.
x=\frac{9}{5} x=\frac{1}{5}
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}