Evaluate
25
Factor
5^{2}
Share
Copied to clipboard
\frac{25\times 3}{4}-\left(-25\times \frac{1}{2}\right)+\frac{25}{-4}
Express 25\times \frac{3}{4} as a single fraction.
\frac{75}{4}-\left(-25\times \frac{1}{2}\right)+\frac{25}{-4}
Multiply 25 and 3 to get 75.
\frac{75}{4}-\frac{-25}{2}+\frac{25}{-4}
Multiply -25 and \frac{1}{2} to get \frac{-25}{2}.
\frac{75}{4}-\left(-\frac{25}{2}\right)+\frac{25}{-4}
Fraction \frac{-25}{2} can be rewritten as -\frac{25}{2} by extracting the negative sign.
\frac{75}{4}+\frac{25}{2}+\frac{25}{-4}
The opposite of -\frac{25}{2} is \frac{25}{2}.
\frac{75}{4}+\frac{50}{4}+\frac{25}{-4}
Least common multiple of 4 and 2 is 4. Convert \frac{75}{4} and \frac{25}{2} to fractions with denominator 4.
\frac{75+50}{4}+\frac{25}{-4}
Since \frac{75}{4} and \frac{50}{4} have the same denominator, add them by adding their numerators.
\frac{125}{4}+\frac{25}{-4}
Add 75 and 50 to get 125.
\frac{125}{4}-\frac{25}{4}
Fraction \frac{25}{-4} can be rewritten as -\frac{25}{4} by extracting the negative sign.
\frac{125-25}{4}
Since \frac{125}{4} and \frac{25}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{100}{4}
Subtract 25 from 125 to get 100.
25
Divide 100 by 4 to get 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}