Solve for y
y = \frac{1645}{48} = 34\frac{13}{48} \approx 34.270833333
Graph
Share
Copied to clipboard
\frac{25\times 53}{2}-24y=-160
Express 25\times \frac{53}{2} as a single fraction.
\frac{1325}{2}-24y=-160
Multiply 25 and 53 to get 1325.
-24y=-160-\frac{1325}{2}
Subtract \frac{1325}{2} from both sides.
-24y=-\frac{320}{2}-\frac{1325}{2}
Convert -160 to fraction -\frac{320}{2}.
-24y=\frac{-320-1325}{2}
Since -\frac{320}{2} and \frac{1325}{2} have the same denominator, subtract them by subtracting their numerators.
-24y=-\frac{1645}{2}
Subtract 1325 from -320 to get -1645.
y=\frac{-\frac{1645}{2}}{-24}
Divide both sides by -24.
y=\frac{-1645}{2\left(-24\right)}
Express \frac{-\frac{1645}{2}}{-24} as a single fraction.
y=\frac{-1645}{-48}
Multiply 2 and -24 to get -48.
y=\frac{1645}{48}
Fraction \frac{-1645}{-48} can be simplified to \frac{1645}{48} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}