Evaluate
\frac{275}{3}\approx 91.666666667
Factor
\frac{5 ^ {2} \cdot 11}{3} = 91\frac{2}{3} = 91.66666666666667
Share
Copied to clipboard
25\times \frac{1}{15}+75\times \frac{18}{30}+125\times \frac{8}{30}+175\times \frac{2}{30}
Reduce the fraction \frac{2}{30} to lowest terms by extracting and canceling out 2.
\frac{25}{15}+75\times \frac{18}{30}+125\times \frac{8}{30}+175\times \frac{2}{30}
Multiply 25 and \frac{1}{15} to get \frac{25}{15}.
\frac{5}{3}+75\times \frac{18}{30}+125\times \frac{8}{30}+175\times \frac{2}{30}
Reduce the fraction \frac{25}{15} to lowest terms by extracting and canceling out 5.
\frac{5}{3}+75\times \frac{3}{5}+125\times \frac{8}{30}+175\times \frac{2}{30}
Reduce the fraction \frac{18}{30} to lowest terms by extracting and canceling out 6.
\frac{5}{3}+\frac{75\times 3}{5}+125\times \frac{8}{30}+175\times \frac{2}{30}
Express 75\times \frac{3}{5} as a single fraction.
\frac{5}{3}+\frac{225}{5}+125\times \frac{8}{30}+175\times \frac{2}{30}
Multiply 75 and 3 to get 225.
\frac{5}{3}+45+125\times \frac{8}{30}+175\times \frac{2}{30}
Divide 225 by 5 to get 45.
\frac{5}{3}+\frac{135}{3}+125\times \frac{8}{30}+175\times \frac{2}{30}
Convert 45 to fraction \frac{135}{3}.
\frac{5+135}{3}+125\times \frac{8}{30}+175\times \frac{2}{30}
Since \frac{5}{3} and \frac{135}{3} have the same denominator, add them by adding their numerators.
\frac{140}{3}+125\times \frac{8}{30}+175\times \frac{2}{30}
Add 5 and 135 to get 140.
\frac{140}{3}+125\times \frac{4}{15}+175\times \frac{2}{30}
Reduce the fraction \frac{8}{30} to lowest terms by extracting and canceling out 2.
\frac{140}{3}+\frac{125\times 4}{15}+175\times \frac{2}{30}
Express 125\times \frac{4}{15} as a single fraction.
\frac{140}{3}+\frac{500}{15}+175\times \frac{2}{30}
Multiply 125 and 4 to get 500.
\frac{140}{3}+\frac{100}{3}+175\times \frac{2}{30}
Reduce the fraction \frac{500}{15} to lowest terms by extracting and canceling out 5.
\frac{140+100}{3}+175\times \frac{2}{30}
Since \frac{140}{3} and \frac{100}{3} have the same denominator, add them by adding their numerators.
\frac{240}{3}+175\times \frac{2}{30}
Add 140 and 100 to get 240.
80+175\times \frac{2}{30}
Divide 240 by 3 to get 80.
80+175\times \frac{1}{15}
Reduce the fraction \frac{2}{30} to lowest terms by extracting and canceling out 2.
80+\frac{175}{15}
Multiply 175 and \frac{1}{15} to get \frac{175}{15}.
80+\frac{35}{3}
Reduce the fraction \frac{175}{15} to lowest terms by extracting and canceling out 5.
\frac{240}{3}+\frac{35}{3}
Convert 80 to fraction \frac{240}{3}.
\frac{240+35}{3}
Since \frac{240}{3} and \frac{35}{3} have the same denominator, add them by adding their numerators.
\frac{275}{3}
Add 240 and 35 to get 275.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}