Evaluate
\frac{25\sqrt{6}}{24}\approx 2.551551815
Graph
Share
Copied to clipboard
25\sqrt{\frac{6^{3}}{12^{4}}}
Cancel out x in both numerator and denominator.
25\sqrt{\frac{216}{12^{4}}}
Calculate 6 to the power of 3 and get 216.
25\sqrt{\frac{216}{20736}}
Calculate 12 to the power of 4 and get 20736.
25\sqrt{\frac{1}{96}}
Reduce the fraction \frac{216}{20736} to lowest terms by extracting and canceling out 216.
25\times \frac{\sqrt{1}}{\sqrt{96}}
Rewrite the square root of the division \sqrt{\frac{1}{96}} as the division of square roots \frac{\sqrt{1}}{\sqrt{96}}.
25\times \frac{1}{\sqrt{96}}
Calculate the square root of 1 and get 1.
25\times \frac{1}{4\sqrt{6}}
Factor 96=4^{2}\times 6. Rewrite the square root of the product \sqrt{4^{2}\times 6} as the product of square roots \sqrt{4^{2}}\sqrt{6}. Take the square root of 4^{2}.
25\times \frac{\sqrt{6}}{4\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{1}{4\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
25\times \frac{\sqrt{6}}{4\times 6}
The square of \sqrt{6} is 6.
25\times \frac{\sqrt{6}}{24}
Multiply 4 and 6 to get 24.
\frac{25\sqrt{6}}{24}
Express 25\times \frac{\sqrt{6}}{24} as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}