Solve for x
x=\sqrt{11}-3\approx 0.31662479
x=-\left(\sqrt{11}+3\right)\approx -6.31662479
Graph
Share
Copied to clipboard
4\left(x+3\right)^{2}=44
Cancel out 25 on both sides.
\left(x+3\right)^{2}=\frac{44}{4}
Divide both sides by 4.
\left(x+3\right)^{2}=11
Divide 44 by 4 to get 11.
x^{2}+6x+9=11
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9-11=0
Subtract 11 from both sides.
x^{2}+6x-2=0
Subtract 11 from 9 to get -2.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-2\right)}}{2}
Square 6.
x=\frac{-6±\sqrt{36+8}}{2}
Multiply -4 times -2.
x=\frac{-6±\sqrt{44}}{2}
Add 36 to 8.
x=\frac{-6±2\sqrt{11}}{2}
Take the square root of 44.
x=\frac{2\sqrt{11}-6}{2}
Now solve the equation x=\frac{-6±2\sqrt{11}}{2} when ± is plus. Add -6 to 2\sqrt{11}.
x=\sqrt{11}-3
Divide -6+2\sqrt{11} by 2.
x=\frac{-2\sqrt{11}-6}{2}
Now solve the equation x=\frac{-6±2\sqrt{11}}{2} when ± is minus. Subtract 2\sqrt{11} from -6.
x=-\sqrt{11}-3
Divide -6-2\sqrt{11} by 2.
x=\sqrt{11}-3 x=-\sqrt{11}-3
The equation is now solved.
4\left(x+3\right)^{2}=44
Cancel out 25 on both sides.
\left(x+3\right)^{2}=\frac{44}{4}
Divide both sides by 4.
\left(x+3\right)^{2}=11
Divide 44 by 4 to get 11.
\sqrt{\left(x+3\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x+3=\sqrt{11} x+3=-\sqrt{11}
Simplify.
x=\sqrt{11}-3 x=-\sqrt{11}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}