Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(x+3\right)^{2}=44
Cancel out 25 on both sides.
\left(x+3\right)^{2}=\frac{44}{4}
Divide both sides by 4.
\left(x+3\right)^{2}=11
Divide 44 by 4 to get 11.
x^{2}+6x+9=11
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
x^{2}+6x+9-11=0
Subtract 11 from both sides.
x^{2}+6x-2=0
Subtract 11 from 9 to get -2.
x=\frac{-6±\sqrt{6^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-2\right)}}{2}
Square 6.
x=\frac{-6±\sqrt{36+8}}{2}
Multiply -4 times -2.
x=\frac{-6±\sqrt{44}}{2}
Add 36 to 8.
x=\frac{-6±2\sqrt{11}}{2}
Take the square root of 44.
x=\frac{2\sqrt{11}-6}{2}
Now solve the equation x=\frac{-6±2\sqrt{11}}{2} when ± is plus. Add -6 to 2\sqrt{11}.
x=\sqrt{11}-3
Divide -6+2\sqrt{11} by 2.
x=\frac{-2\sqrt{11}-6}{2}
Now solve the equation x=\frac{-6±2\sqrt{11}}{2} when ± is minus. Subtract 2\sqrt{11} from -6.
x=-\sqrt{11}-3
Divide -6-2\sqrt{11} by 2.
x=\sqrt{11}-3 x=-\sqrt{11}-3
The equation is now solved.
4\left(x+3\right)^{2}=44
Cancel out 25 on both sides.
\left(x+3\right)^{2}=\frac{44}{4}
Divide both sides by 4.
\left(x+3\right)^{2}=11
Divide 44 by 4 to get 11.
\sqrt{\left(x+3\right)^{2}}=\sqrt{11}
Take the square root of both sides of the equation.
x+3=\sqrt{11} x+3=-\sqrt{11}
Simplify.
x=\sqrt{11}-3 x=-\sqrt{11}-3
Subtract 3 from both sides of the equation.