Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1-x^{2}=\frac{16}{25}
Divide both sides by 25.
-x^{2}=\frac{16}{25}-1
Subtract 1 from both sides.
-x^{2}=-\frac{9}{25}
Subtract 1 from \frac{16}{25} to get -\frac{9}{25}.
x^{2}=\frac{-\frac{9}{25}}{-1}
Divide both sides by -1.
x^{2}=\frac{-9}{25\left(-1\right)}
Express \frac{-\frac{9}{25}}{-1} as a single fraction.
x^{2}=\frac{-9}{-25}
Multiply 25 and -1 to get -25.
x^{2}=\frac{9}{25}
Fraction \frac{-9}{-25} can be simplified to \frac{9}{25} by removing the negative sign from both the numerator and the denominator.
x=\frac{3}{5} x=-\frac{3}{5}
Take the square root of both sides of the equation.
1-x^{2}=\frac{16}{25}
Divide both sides by 25.
1-x^{2}-\frac{16}{25}=0
Subtract \frac{16}{25} from both sides.
\frac{9}{25}-x^{2}=0
Subtract \frac{16}{25} from 1 to get \frac{9}{25}.
-x^{2}+\frac{9}{25}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times \frac{9}{25}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and \frac{9}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times \frac{9}{25}}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\times \frac{9}{25}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{\frac{36}{25}}}{2\left(-1\right)}
Multiply 4 times \frac{9}{25}.
x=\frac{0±\frac{6}{5}}{2\left(-1\right)}
Take the square root of \frac{36}{25}.
x=\frac{0±\frac{6}{5}}{-2}
Multiply 2 times -1.
x=-\frac{3}{5}
Now solve the equation x=\frac{0±\frac{6}{5}}{-2} when ± is plus.
x=\frac{3}{5}
Now solve the equation x=\frac{0±\frac{6}{5}}{-2} when ± is minus.
x=-\frac{3}{5} x=\frac{3}{5}
The equation is now solved.