Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. p
Tick mark Image

Similar Problems from Web Search

Share

25\times 25\times 25\times 25\left(-p\right)^{2}\left(-p\right)\left(-p\right)\left(-p\right)
Multiply -p and -p to get \left(-p\right)^{2}.
25\times 25\times 25\times 25\left(-p\right)^{3}\left(-p\right)\left(-p\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
25\times 25\times 25\times 25\left(-p\right)^{4}\left(-p\right)
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
25\times 25\times 25\times 25\left(-p\right)^{5}
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
625\times 25\times 25\left(-p\right)^{5}
Multiply 25 and 25 to get 625.
15625\times 25\left(-p\right)^{5}
Multiply 625 and 25 to get 15625.
390625\left(-p\right)^{5}
Multiply 15625 and 25 to get 390625.
390625\left(-1\right)^{5}p^{5}
Expand \left(-p\right)^{5}.
390625\left(-1\right)p^{5}
Calculate -1 to the power of 5 and get -1.
-390625p^{5}
Multiply 390625 and -1 to get -390625.
\frac{\mathrm{d}}{\mathrm{d}p}(25\times 25\times 25\times 25\left(-p\right)^{2}\left(-p\right)\left(-p\right)\left(-p\right))
Multiply -p and -p to get \left(-p\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}p}(25\times 25\times 25\times 25\left(-p\right)^{3}\left(-p\right)\left(-p\right))
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}p}(25\times 25\times 25\times 25\left(-p\right)^{4}\left(-p\right))
To multiply powers of the same base, add their exponents. Add 3 and 1 to get 4.
\frac{\mathrm{d}}{\mathrm{d}p}(25\times 25\times 25\times 25\left(-p\right)^{5})
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
\frac{\mathrm{d}}{\mathrm{d}p}(625\times 25\times 25\left(-p\right)^{5})
Multiply 25 and 25 to get 625.
\frac{\mathrm{d}}{\mathrm{d}p}(15625\times 25\left(-p\right)^{5})
Multiply 625 and 25 to get 15625.
\frac{\mathrm{d}}{\mathrm{d}p}(390625\left(-p\right)^{5})
Multiply 15625 and 25 to get 390625.
\frac{\mathrm{d}}{\mathrm{d}p}(390625\left(-1\right)^{5}p^{5})
Expand \left(-p\right)^{5}.
\frac{\mathrm{d}}{\mathrm{d}p}(390625\left(-1\right)p^{5})
Calculate -1 to the power of 5 and get -1.
\frac{\mathrm{d}}{\mathrm{d}p}(-390625p^{5})
Multiply 390625 and -1 to get -390625.
5\left(-390625\right)p^{5-1}
The derivative of ax^{n} is nax^{n-1}.
-1953125p^{5-1}
Multiply 5 times -390625.
-1953125p^{4}
Subtract 1 from 5.