25 \% x + 88 ( 1 - x ) = 165 \%
Solve for x
x=\frac{1727}{1755}\approx 0.984045584
Graph
Share
Copied to clipboard
\frac{1}{4}x+88\left(1-x\right)=\frac{165}{100}
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{1}{4}x+88-88x=\frac{165}{100}
Use the distributive property to multiply 88 by 1-x.
-\frac{351}{4}x+88=\frac{165}{100}
Combine \frac{1}{4}x and -88x to get -\frac{351}{4}x.
-\frac{351}{4}x+88=\frac{33}{20}
Reduce the fraction \frac{165}{100} to lowest terms by extracting and canceling out 5.
-\frac{351}{4}x=\frac{33}{20}-88
Subtract 88 from both sides.
-\frac{351}{4}x=\frac{33}{20}-\frac{1760}{20}
Convert 88 to fraction \frac{1760}{20}.
-\frac{351}{4}x=\frac{33-1760}{20}
Since \frac{33}{20} and \frac{1760}{20} have the same denominator, subtract them by subtracting their numerators.
-\frac{351}{4}x=-\frac{1727}{20}
Subtract 1760 from 33 to get -1727.
x=-\frac{1727}{20}\left(-\frac{4}{351}\right)
Multiply both sides by -\frac{4}{351}, the reciprocal of -\frac{351}{4}.
x=\frac{-1727\left(-4\right)}{20\times 351}
Multiply -\frac{1727}{20} times -\frac{4}{351} by multiplying numerator times numerator and denominator times denominator.
x=\frac{6908}{7020}
Do the multiplications in the fraction \frac{-1727\left(-4\right)}{20\times 351}.
x=\frac{1727}{1755}
Reduce the fraction \frac{6908}{7020} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}