Solve for V_1
V_{1}=\frac{50-2V_{2}}{3}
Solve for V_2
V_{2}=-\frac{3V_{1}}{2}+25
Share
Copied to clipboard
1.5V_{1}+V_{2}=25
Swap sides so that all variable terms are on the left hand side.
1.5V_{1}=25-V_{2}
Subtract V_{2} from both sides.
\frac{1.5V_{1}}{1.5}=\frac{25-V_{2}}{1.5}
Divide both sides of the equation by 1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
V_{1}=\frac{25-V_{2}}{1.5}
Dividing by 1.5 undoes the multiplication by 1.5.
V_{1}=\frac{50-2V_{2}}{3}
Divide 25-V_{2} by 1.5 by multiplying 25-V_{2} by the reciprocal of 1.5.
1.5V_{1}+V_{2}=25
Swap sides so that all variable terms are on the left hand side.
V_{2}=25-1.5V_{1}
Subtract 1.5V_{1} from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}