Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

25=4a^{2}-20a+25+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-5\right)^{2}.
25=5a^{2}-20a+25
Combine 4a^{2} and a^{2} to get 5a^{2}.
5a^{2}-20a+25=25
Swap sides so that all variable terms are on the left hand side.
5a^{2}-20a+25-25=0
Subtract 25 from both sides.
5a^{2}-20a=0
Subtract 25 from 25 to get 0.
a\left(5a-20\right)=0
Factor out a.
a=0 a=4
To find equation solutions, solve a=0 and 5a-20=0.
25=4a^{2}-20a+25+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-5\right)^{2}.
25=5a^{2}-20a+25
Combine 4a^{2} and a^{2} to get 5a^{2}.
5a^{2}-20a+25=25
Swap sides so that all variable terms are on the left hand side.
5a^{2}-20a+25-25=0
Subtract 25 from both sides.
5a^{2}-20a=0
Subtract 25 from 25 to get 0.
a=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -20 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-20\right)±20}{2\times 5}
Take the square root of \left(-20\right)^{2}.
a=\frac{20±20}{2\times 5}
The opposite of -20 is 20.
a=\frac{20±20}{10}
Multiply 2 times 5.
a=\frac{40}{10}
Now solve the equation a=\frac{20±20}{10} when ± is plus. Add 20 to 20.
a=4
Divide 40 by 10.
a=\frac{0}{10}
Now solve the equation a=\frac{20±20}{10} when ± is minus. Subtract 20 from 20.
a=0
Divide 0 by 10.
a=4 a=0
The equation is now solved.
25=4a^{2}-20a+25+a^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2a-5\right)^{2}.
25=5a^{2}-20a+25
Combine 4a^{2} and a^{2} to get 5a^{2}.
5a^{2}-20a+25=25
Swap sides so that all variable terms are on the left hand side.
5a^{2}-20a=25-25
Subtract 25 from both sides.
5a^{2}-20a=0
Subtract 25 from 25 to get 0.
\frac{5a^{2}-20a}{5}=\frac{0}{5}
Divide both sides by 5.
a^{2}+\left(-\frac{20}{5}\right)a=\frac{0}{5}
Dividing by 5 undoes the multiplication by 5.
a^{2}-4a=\frac{0}{5}
Divide -20 by 5.
a^{2}-4a=0
Divide 0 by 5.
a^{2}-4a+\left(-2\right)^{2}=\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-4a+4=4
Square -2.
\left(a-2\right)^{2}=4
Factor a^{2}-4a+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-2\right)^{2}}=\sqrt{4}
Take the square root of both sides of the equation.
a-2=2 a-2=-2
Simplify.
a=4 a=0
Add 2 to both sides of the equation.