Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

30x+5x^{2}=25
Swap sides so that all variable terms are on the left hand side.
30x+5x^{2}-25=0
Subtract 25 from both sides.
5x^{2}+30x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\times 5\left(-25\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 30 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 5\left(-25\right)}}{2\times 5}
Square 30.
x=\frac{-30±\sqrt{900-20\left(-25\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-30±\sqrt{900+500}}{2\times 5}
Multiply -20 times -25.
x=\frac{-30±\sqrt{1400}}{2\times 5}
Add 900 to 500.
x=\frac{-30±10\sqrt{14}}{2\times 5}
Take the square root of 1400.
x=\frac{-30±10\sqrt{14}}{10}
Multiply 2 times 5.
x=\frac{10\sqrt{14}-30}{10}
Now solve the equation x=\frac{-30±10\sqrt{14}}{10} when ± is plus. Add -30 to 10\sqrt{14}.
x=\sqrt{14}-3
Divide -30+10\sqrt{14} by 10.
x=\frac{-10\sqrt{14}-30}{10}
Now solve the equation x=\frac{-30±10\sqrt{14}}{10} when ± is minus. Subtract 10\sqrt{14} from -30.
x=-\sqrt{14}-3
Divide -30-10\sqrt{14} by 10.
x=\sqrt{14}-3 x=-\sqrt{14}-3
The equation is now solved.
30x+5x^{2}=25
Swap sides so that all variable terms are on the left hand side.
5x^{2}+30x=25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+30x}{5}=\frac{25}{5}
Divide both sides by 5.
x^{2}+\frac{30}{5}x=\frac{25}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+6x=\frac{25}{5}
Divide 30 by 5.
x^{2}+6x=5
Divide 25 by 5.
x^{2}+6x+3^{2}=5+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=5+9
Square 3.
x^{2}+6x+9=14
Add 5 to 9.
\left(x+3\right)^{2}=14
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x+3=\sqrt{14} x+3=-\sqrt{14}
Simplify.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Subtract 3 from both sides of the equation.
30x+5x^{2}=25
Swap sides so that all variable terms are on the left hand side.
30x+5x^{2}-25=0
Subtract 25 from both sides.
5x^{2}+30x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-30±\sqrt{30^{2}-4\times 5\left(-25\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 30 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 5\left(-25\right)}}{2\times 5}
Square 30.
x=\frac{-30±\sqrt{900-20\left(-25\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-30±\sqrt{900+500}}{2\times 5}
Multiply -20 times -25.
x=\frac{-30±\sqrt{1400}}{2\times 5}
Add 900 to 500.
x=\frac{-30±10\sqrt{14}}{2\times 5}
Take the square root of 1400.
x=\frac{-30±10\sqrt{14}}{10}
Multiply 2 times 5.
x=\frac{10\sqrt{14}-30}{10}
Now solve the equation x=\frac{-30±10\sqrt{14}}{10} when ± is plus. Add -30 to 10\sqrt{14}.
x=\sqrt{14}-3
Divide -30+10\sqrt{14} by 10.
x=\frac{-10\sqrt{14}-30}{10}
Now solve the equation x=\frac{-30±10\sqrt{14}}{10} when ± is minus. Subtract 10\sqrt{14} from -30.
x=-\sqrt{14}-3
Divide -30-10\sqrt{14} by 10.
x=\sqrt{14}-3 x=-\sqrt{14}-3
The equation is now solved.
30x+5x^{2}=25
Swap sides so that all variable terms are on the left hand side.
5x^{2}+30x=25
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}+30x}{5}=\frac{25}{5}
Divide both sides by 5.
x^{2}+\frac{30}{5}x=\frac{25}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+6x=\frac{25}{5}
Divide 30 by 5.
x^{2}+6x=5
Divide 25 by 5.
x^{2}+6x+3^{2}=5+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+6x+9=5+9
Square 3.
x^{2}+6x+9=14
Add 5 to 9.
\left(x+3\right)^{2}=14
Factor x^{2}+6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+3\right)^{2}}=\sqrt{14}
Take the square root of both sides of the equation.
x+3=\sqrt{14} x+3=-\sqrt{14}
Simplify.
x=\sqrt{14}-3 x=-\sqrt{14}-3
Subtract 3 from both sides of the equation.