Solve for R
R = \frac{\sqrt{91501} + 1}{30} \approx 10.116377406
R=\frac{1-\sqrt{91501}}{30}\approx -10.04971074
Share
Copied to clipboard
25+R-15R^{2}=-1500
Subtract 15R^{2} from both sides.
25+R-15R^{2}+1500=0
Add 1500 to both sides.
1525+R-15R^{2}=0
Add 25 and 1500 to get 1525.
-15R^{2}+R+1525=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
R=\frac{-1±\sqrt{1^{2}-4\left(-15\right)\times 1525}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 1 for b, and 1525 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{-1±\sqrt{1-4\left(-15\right)\times 1525}}{2\left(-15\right)}
Square 1.
R=\frac{-1±\sqrt{1+60\times 1525}}{2\left(-15\right)}
Multiply -4 times -15.
R=\frac{-1±\sqrt{1+91500}}{2\left(-15\right)}
Multiply 60 times 1525.
R=\frac{-1±\sqrt{91501}}{2\left(-15\right)}
Add 1 to 91500.
R=\frac{-1±\sqrt{91501}}{-30}
Multiply 2 times -15.
R=\frac{\sqrt{91501}-1}{-30}
Now solve the equation R=\frac{-1±\sqrt{91501}}{-30} when ± is plus. Add -1 to \sqrt{91501}.
R=\frac{1-\sqrt{91501}}{30}
Divide -1+\sqrt{91501} by -30.
R=\frac{-\sqrt{91501}-1}{-30}
Now solve the equation R=\frac{-1±\sqrt{91501}}{-30} when ± is minus. Subtract \sqrt{91501} from -1.
R=\frac{\sqrt{91501}+1}{30}
Divide -1-\sqrt{91501} by -30.
R=\frac{1-\sqrt{91501}}{30} R=\frac{\sqrt{91501}+1}{30}
The equation is now solved.
25+R-15R^{2}=-1500
Subtract 15R^{2} from both sides.
R-15R^{2}=-1500-25
Subtract 25 from both sides.
R-15R^{2}=-1525
Subtract 25 from -1500 to get -1525.
-15R^{2}+R=-1525
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15R^{2}+R}{-15}=-\frac{1525}{-15}
Divide both sides by -15.
R^{2}+\frac{1}{-15}R=-\frac{1525}{-15}
Dividing by -15 undoes the multiplication by -15.
R^{2}-\frac{1}{15}R=-\frac{1525}{-15}
Divide 1 by -15.
R^{2}-\frac{1}{15}R=\frac{305}{3}
Reduce the fraction \frac{-1525}{-15} to lowest terms by extracting and canceling out 5.
R^{2}-\frac{1}{15}R+\left(-\frac{1}{30}\right)^{2}=\frac{305}{3}+\left(-\frac{1}{30}\right)^{2}
Divide -\frac{1}{15}, the coefficient of the x term, by 2 to get -\frac{1}{30}. Then add the square of -\frac{1}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
R^{2}-\frac{1}{15}R+\frac{1}{900}=\frac{305}{3}+\frac{1}{900}
Square -\frac{1}{30} by squaring both the numerator and the denominator of the fraction.
R^{2}-\frac{1}{15}R+\frac{1}{900}=\frac{91501}{900}
Add \frac{305}{3} to \frac{1}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(R-\frac{1}{30}\right)^{2}=\frac{91501}{900}
Factor R^{2}-\frac{1}{15}R+\frac{1}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(R-\frac{1}{30}\right)^{2}}=\sqrt{\frac{91501}{900}}
Take the square root of both sides of the equation.
R-\frac{1}{30}=\frac{\sqrt{91501}}{30} R-\frac{1}{30}=-\frac{\sqrt{91501}}{30}
Simplify.
R=\frac{\sqrt{91501}+1}{30} R=\frac{1-\sqrt{91501}}{30}
Add \frac{1}{30} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}