Solve for x
x = \frac{16}{3} = 5\frac{1}{3} \approx 5.333333333
Graph
Share
Copied to clipboard
41+x^{2}=\left(3+x\right)^{2}
Add 25 and 16 to get 41.
41+x^{2}=9+6x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3+x\right)^{2}.
41+x^{2}-6x=9+x^{2}
Subtract 6x from both sides.
41+x^{2}-6x-x^{2}=9
Subtract x^{2} from both sides.
41-6x=9
Combine x^{2} and -x^{2} to get 0.
-6x=9-41
Subtract 41 from both sides.
-6x=-32
Subtract 41 from 9 to get -32.
x=\frac{-32}{-6}
Divide both sides by -6.
x=\frac{16}{3}
Reduce the fraction \frac{-32}{-6} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}