Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(3y-2y^{2}\right)
Factor out 8.
y\left(3-2y\right)
Consider 3y-2y^{2}. Factor out y.
8y\left(-2y+3\right)
Rewrite the complete factored expression.
-16y^{2}+24y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-24±\sqrt{24^{2}}}{2\left(-16\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-24±24}{2\left(-16\right)}
Take the square root of 24^{2}.
y=\frac{-24±24}{-32}
Multiply 2 times -16.
y=\frac{0}{-32}
Now solve the equation y=\frac{-24±24}{-32} when ± is plus. Add -24 to 24.
y=0
Divide 0 by -32.
y=-\frac{48}{-32}
Now solve the equation y=\frac{-24±24}{-32} when ± is minus. Subtract 24 from -24.
y=\frac{3}{2}
Reduce the fraction \frac{-48}{-32} to lowest terms by extracting and canceling out 16.
-16y^{2}+24y=-16y\left(y-\frac{3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{3}{2} for x_{2}.
-16y^{2}+24y=-16y\times \frac{-2y+3}{-2}
Subtract \frac{3}{2} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-16y^{2}+24y=8y\left(-2y+3\right)
Cancel out 2, the greatest common factor in -16 and -2.