Solve for x
x=3
x=5
Graph
Share
Copied to clipboard
24x-3x^{2}-45=0
Subtract 45 from both sides.
8x-x^{2}-15=0
Divide both sides by 3.
-x^{2}+8x-15=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=8 ab=-\left(-15\right)=15
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,15 3,5
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 15.
1+15=16 3+5=8
Calculate the sum for each pair.
a=5 b=3
The solution is the pair that gives sum 8.
\left(-x^{2}+5x\right)+\left(3x-15\right)
Rewrite -x^{2}+8x-15 as \left(-x^{2}+5x\right)+\left(3x-15\right).
-x\left(x-5\right)+3\left(x-5\right)
Factor out -x in the first and 3 in the second group.
\left(x-5\right)\left(-x+3\right)
Factor out common term x-5 by using distributive property.
x=5 x=3
To find equation solutions, solve x-5=0 and -x+3=0.
-3x^{2}+24x=45
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-3x^{2}+24x-45=45-45
Subtract 45 from both sides of the equation.
-3x^{2}+24x-45=0
Subtracting 45 from itself leaves 0.
x=\frac{-24±\sqrt{24^{2}-4\left(-3\right)\left(-45\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 24 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\left(-3\right)\left(-45\right)}}{2\left(-3\right)}
Square 24.
x=\frac{-24±\sqrt{576+12\left(-45\right)}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-24±\sqrt{576-540}}{2\left(-3\right)}
Multiply 12 times -45.
x=\frac{-24±\sqrt{36}}{2\left(-3\right)}
Add 576 to -540.
x=\frac{-24±6}{2\left(-3\right)}
Take the square root of 36.
x=\frac{-24±6}{-6}
Multiply 2 times -3.
x=-\frac{18}{-6}
Now solve the equation x=\frac{-24±6}{-6} when ± is plus. Add -24 to 6.
x=3
Divide -18 by -6.
x=-\frac{30}{-6}
Now solve the equation x=\frac{-24±6}{-6} when ± is minus. Subtract 6 from -24.
x=5
Divide -30 by -6.
x=3 x=5
The equation is now solved.
-3x^{2}+24x=45
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}+24x}{-3}=\frac{45}{-3}
Divide both sides by -3.
x^{2}+\frac{24}{-3}x=\frac{45}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}-8x=\frac{45}{-3}
Divide 24 by -3.
x^{2}-8x=-15
Divide 45 by -3.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-15+16
Square -4.
x^{2}-8x+16=1
Add -15 to 16.
\left(x-4\right)^{2}=1
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-4=1 x-4=-1
Simplify.
x=5 x=3
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}