Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(8t+t^{2}\right)
Factor out 3.
t\left(8+t\right)
Consider 8t+t^{2}. Factor out t.
3t\left(t+8\right)
Rewrite the complete factored expression.
3t^{2}+24t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-24±\sqrt{24^{2}}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-24±24}{2\times 3}
Take the square root of 24^{2}.
t=\frac{-24±24}{6}
Multiply 2 times 3.
t=\frac{0}{6}
Now solve the equation t=\frac{-24±24}{6} when ± is plus. Add -24 to 24.
t=0
Divide 0 by 6.
t=-\frac{48}{6}
Now solve the equation t=\frac{-24±24}{6} when ± is minus. Subtract 24 from -24.
t=-8
Divide -48 by 6.
3t^{2}+24t=3t\left(t-\left(-8\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -8 for x_{2}.
3t^{2}+24t=3t\left(t+8\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.