Evaluate
\frac{249}{50}=4.98
Factor
\frac{3 \cdot 83}{2 \cdot 5 ^ {2}} = 4\frac{49}{50} = 4.98
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)249}\\\end{array}
Use the 1^{st} digit 2 from dividend 249
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)249}\\\end{array}
Since 2 is less than 50, use the next digit 4 from dividend 249 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)249}\\\end{array}
Use the 2^{nd} digit 4 from dividend 249
\begin{array}{l}\phantom{50)}00\phantom{4}\\50\overline{)249}\\\end{array}
Since 24 is less than 50, use the next digit 9 from dividend 249 and add 0 to the quotient
\begin{array}{l}\phantom{50)}00\phantom{5}\\50\overline{)249}\\\end{array}
Use the 3^{rd} digit 9 from dividend 249
\begin{array}{l}\phantom{50)}004\phantom{6}\\50\overline{)249}\\\phantom{50)}\underline{\phantom{}200\phantom{}}\\\phantom{50)9}49\\\end{array}
Find closest multiple of 50 to 249. We see that 4 \times 50 = 200 is the nearest. Now subtract 200 from 249 to get reminder 49. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }49
Since 49 is less than 50, stop the division. The reminder is 49. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}